Given :
"V_1 = 0.15 \\;m^3 \\\\\n\n p_1 = 15 \\; bar \\\\\n\n T_1 = T_2 = 550\\; K \\\\\n\n\\frac{ V_2}{V_1} = 4 \\\\\n\n T_3 = 290 \\; K"
Considering the isothermal process 1–2, we have
"p_1 V_1 = p_2 V_2 \\\\\n\n p_2 = \\frac{p_1V_1}{V_2} \\\\\n\np_2 = \\frac{15 \\times 0.15}{4 \\times 0.15} = 3.75 \\;bar"
Work done,
"W_{1-2} = p_1V_1 log_e(\\frac{V_2}{V_1}) \\\\\n\n= (15 \\times 10^5 ) \\times 0.15 \\times log_e (4) \\\\\n\n= 311916 \\; J = 311.9 \\; kJ"
Considering constant volume process 2-3, we get
"V_2=V_3=V_4 \\times 0.15 =0.6 \\; m^3 \\\\\n\n\\frac{p_2}{T_2} = \\frac{p_3}{T_3} \\\\\n\np_3=p_2 \\times \\frac{T_3}{T_2} = 3.75 \\times \\frac{290}{550} = 1.98 \\;bar \\\\\n\nW_{2-3} =0"
...since volume remains constant
Consider polytropic process 3–1 :
"p_3V_3^n = p_1V_1^n \\\\\n\n\\frac{p_1}{p_3} = (\\frac{V_3}{V_1})^n"
Taking log on both sides, we get
"log_e(\\frac{p_1}{p_3}) = n log_e( \\frac{V_3}{V_1}) \\\\\n\nn = \\frac{log_e(\\frac{p_1}{p_3})}{log_e( \\frac{V_3}{V_1})} \\\\\n\n= \\frac{log_e(\\frac{15}{1.98})}{log_e(4)} \\\\\n\n= 1.46 \\\\\n\nW_{3-1} = \\frac{p_3V_3 -p_1V_1}{n-1} \\\\\n\n= \\frac{1.98 \\times 10^5 \\times 0.6 \u2013 15 \\times 10^5 \\times 0.15}{1.46-1} \\\\\n\n= -230869 \\;J \\\\\n\n= -230.87 \\;kJ"
Net work done "= W_{1\u20132} + W_{2\u20133} + W_{3\u20131}"
"= 311.9 + 0 +(-230.87) = 81.03 \\;kJ"
For a cuclic process,
"\\oint \u03b4Q= \\oint \u03b4W"
Heat transferred during the cycle = 81.03 kJ
Comments
Leave a comment