Question #202972

Calculate the mean free path of a gas of randomly-moving hard spheres of 2 nanometer radius, when the density of spheres is 3.00 x 1019 per cubic meter.


  • A. 1.17 × 10-4 m
  •  B. 9.76 × 10-5 m
  •  C. 4.70 × 10-4 m
  •  D. 1.88 × 10-3 m
  •  E. None of the above.
1
Expert's answer
2021-06-04T08:05:40-0400

The mean free path or the average distance traveled between collisions can be calculated by using


λ=vtmean=V4π2r2N=14π2r2ρ\lambda =v\cdot t_{mean}= \frac{V}{4\pi \sqrt{2}r²N}= \frac{1}{4\pi \sqrt{2}r² \rho}


Then, we substitute the density of molecules (ρ=N/V)(\rho=N/V) and the molecule radius r (in meters) to find λ\lambda :


λ=14π2r2ρ=14π2(2×109m)2(3×1019molecules/m3)=4.67×104m/molecule\lambda = \frac{1}{4\pi \sqrt{2}r² \rho}= \frac{1}{4\pi \sqrt{2}(2\times 10^{-9}m)² (3\times10^{19}\,molecules/m^{3})}=4.67\times10^{-4}\,m/molecule


In conclusion, the correct answer is C. 4.70 × 10-4 m


Reference:

  • Young, H. D., Freedman, R. A., & Ford, A. L. (2006). Sears and Zemansky's university physics (Vol. 1). Pearson education.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS