(a) Let x-axis along east and y-axis along the north direction. Breaking the forces along the x and y-axis.
150 gm SE component, F 1 ⃗ = 150 c o s ( 45 ) i ^ − 150 s i n ( 45 ) j ^ \vec{F_1} = 150cos(45)\hat{i} - 150sin(45)\hat{j} F 1 = 150 cos ( 45 ) i ^ − 150 s in ( 45 ) j ^
300 gm due S 60° W, F 2 ⃗ = − 200 s i n ( 60 ) i ^ − 200 c o s ( 60 ) j ^ \vec{F_2} =- 200sin(60)\hat{i} - 200cos(60)\hat{j} F 2 = − 200 s in ( 60 ) i ^ − 200 cos ( 60 ) j ^
280 gm due W , F 3 ⃗ = − 280 i ^ \vec{F_3} = -280\hat{i} F 3 = − 280 i ^
180 gm 60° S of E, F 4 ⃗ = 180 c o s ( 60 ) i ^ − 180 s i n ( 60 ) j ^ \vec{F_4} = 180cos(60)\hat{i} - 180sin(60)\hat{j} F 4 = 180 cos ( 60 ) i ^ − 180 s in ( 60 ) j ^
Resultant Force:
F ⃗ = F 1 ⃗ + F 2 ⃗ + F 3 ⃗ + F 4 ⃗ \vec{F}=\vec{F_1} +\vec{F_2}+\vec{F_3}+\vec{F_4} F = F 1 + F 2 + F 3 + F 4
F ⃗ = 150 c o s ( 45 ) i ^ − 150 s i n ( 45 ) j ^ − 200 s i n ( 60 ) i ^ − 200 c o s ( 60 ) j ^ − 280 i ^ + 180 c o s ( 60 ) i ^ − 180 s i n ( 60 ) j ^ \vec{F} = 150cos(45)\hat{i} - 150sin(45)\hat{j} - 200sin(60)\hat{i} - 200cos(60)\hat{j} -280\hat{i} +180cos(60)\hat{i} - 180sin(60)\hat{j} F = 150 cos ( 45 ) i ^ − 150 s in ( 45 ) j ^ − 200 s in ( 60 ) i ^ − 200 cos ( 60 ) j ^ − 280 i ^ + 180 cos ( 60 ) i ^ − 180 s in ( 60 ) j ^
F ⃗ = ( − 257.14 ) i ^ + ( − 361.95 ) i ^ \vec{F} = (-257.14)\hat{i}+(-361.95)\hat{i} F = ( − 257.14 ) i ^ + ( − 361.95 ) i ^
Magnitude of the force, F = ( 257.14 ) 2 + ( 361.95 ) 2 = 443.99 g m F = \sqrt{(257.14)^2+(361.95)^2} = 443.99 gm F = ( 257.14 ) 2 + ( 361.95 ) 2 = 443.99 g m
Direction, θ = t a n − 1 − 361.95 − 257.14 = 54.6 1 0 \theta = tan^{-1}\frac{-361.95}{-257.14} = 54.61 ^0 θ = t a n − 1 − 257.14 − 361.95 = 54.6 1 0 south of west.
(b) The single force that can balance it will be of magnitude 443.99 gm in 54.61 degree north of east.
Comments