(a) Calculate its temperature at the time
of exit.
(b) Calculate the (maximum) the
power output of the turning turbine.
(c) The turbine is one component of a
model closed-cycle gas turbine
engine . Calculate the maximum
efficiency of the engine.
Solution.
"1. T_h=933K;"
"T_c=234.1K;"
"m_a=1.00g;"
"m_m=15.0g;"
"L_m=1.18\\sdot 10^4J\/kg;"
"L_f=3.97\\sdot10^5J\/kg;"
"Q_c=m_mL_m=15\\sdot10^{-3}kg\\sdot1.18\\sdot10^4J\/kg=177J;"
"Q_h=m_aL_a=10^{-3}kg\\sdot3.97\\sdot10^5J\/kg=397J;"
"W_{eng}=Q_h-Q_c=220J;"
"e=\\dfrac{W_{eng}}{Q_h}=\\dfrac{220J}{397J}=0.554;"
The theoretical (Carnot) efficiency is "\\dfrac{T_h-T_c}{T_h}=\\dfrac{933K-234.1K}{933K}=0.749;"
"2." "a)(\\dfrac{P_fV_f}{T_f})^\\gamma=(\\dfrac{P_iV_i}{T_i})^\\gamma;"
"T_f=T_i(\\dfrac{P_f}{P_i})^{(\\gamma-1)\/\\gamma};" "\\gamma=\\dfrac{5}{3};"
"T_f=1073K\\sdot(\\dfrac{3\\sdot10^5Pa}{1.50\\sdot 10^6Pa})^{0.4}=564K;"
"b) \\Delta E_{int}=nC_V\\Delta T=Q-W_{eng}=0-W_{eng}\\implies W_{eng}=-nC_v\\Delta T;"
"P=\\dfrac{W_{eng}}{t}=\\dfrac{-nC_V\\Delta T}{t}=2.12\\sdot10^5W;"
"c)e_c=1-\\dfrac{T_f}{T_i}=1-\\dfrac{564K}{1073K}=0.475" ;
Answer: "1. e=0.554,"The theoretical (Carnot) efficiency is 0.749;
"2. a)T_f=564K;"
"b)P=2.12\\sdot10^5W;"
"c) e_c=0.475."
Comments
Leave a comment