Question #193531

Argon enters a turbine at a rate of 80.0 kg/min, a temperature of 800°C, and a pressure of 1.50 MPa. It

expands adiabatically as it pushes on the turbine blades and exits at a pressure of 300 kPa.

(a) Calculate its temperature at the time of exit. [5]

(b) Calculate the (maximum) power output of the turning turbine. [5]

(c) The turbine is one component of a model closed-cycle gas turbine engine. Calculate the maximum

efficiency of the engine.


1
Expert's answer
2021-05-14T18:22:42-0400

Solution.

Ti=1073K;T_i=1073K;

Pi=1.50106Pa;P_i=1.50\sdot10^6Pa;

Pf=3105Pa;P_f=3\sdot 10^5Pa;

v=80.0kg/min;v=80.0kg/min;

a)(PfVfTf)γ=(PiViTi)γ;a)(\dfrac{P_fV_f}{T_f})^\gamma=(\dfrac{P_iV_i}{T_i})^\gamma;

Tf=Ti(PfPi)(γ1)/γ;T_f=T_i(\dfrac{P_f}{P_i})^{(\gamma-1)/\gamma};

γ=53\gamma=\dfrac{5}{3} for Argon,

Tf=1073K(3105Pa1.50106Pa)0.4=564K;T_f=1073K\sdot(\dfrac{3\sdot10^5Pa}{1.50\sdot 10^6Pa})^{0.4}=564K;

b)ΔEint=nCVΔT=QWeng=0Weng    Weng=nCvΔT;b) \Delta E_{int}=nC_V\Delta T=Q-W_{eng}=0-W_{eng}\implies W_{eng}=-nC_v\Delta T;


P=Wengt=nCVΔTt;P=\dfrac{W_{eng}}{t}=\dfrac{-nC_V\Delta T}{t};

P=2.12105W;P=2.12\sdot 10^5W;

c)ec=1TfTi=1564K1073K=0.475c)e_c=1-\dfrac{T_f}{T_i}=1-\dfrac{564K}{1073K}=0.475 or 47.5%;47.5\%;

Answer: a)Tf=564K;a) T_f=564K;

b)P=2.12105W;b)P=2.12\sdot10^5W;

c)ec=47.5%.c) e_c=47.5\%.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS