Argon enters a turbine at a rate of 80.0 kg/min, a temperature of 800°C, and a pressure of 1.50 MPa. It
expands adiabatically as it pushes on the turbine blades and exits at a pressure of 300 kPa.
(a) Calculate its temperature at the time of exit. [5]
(b) Calculate the (maximum) power output of the turning turbine. [5]
(c) The turbine is one component of a model closed-cycle gas turbine engine. Calculate the maximum
efficiency of the engine.
Solution.
"T_i=1073K;"
"P_i=1.50\\sdot10^6Pa;"
"P_f=3\\sdot 10^5Pa;"
"v=80.0kg\/min;"
"a)(\\dfrac{P_fV_f}{T_f})^\\gamma=(\\dfrac{P_iV_i}{T_i})^\\gamma;"
"T_f=T_i(\\dfrac{P_f}{P_i})^{(\\gamma-1)\/\\gamma};"
"\\gamma=\\dfrac{5}{3}" for Argon,
"T_f=1073K\\sdot(\\dfrac{3\\sdot10^5Pa}{1.50\\sdot 10^6Pa})^{0.4}=564K;"
"b) \\Delta E_{int}=nC_V\\Delta T=Q-W_{eng}=0-W_{eng}\\implies W_{eng}=-nC_v\\Delta T;"
"P=\\dfrac{W_{eng}}{t}=\\dfrac{-nC_V\\Delta T}{t};"
"P=2.12\\sdot 10^5W;"
"c)e_c=1-\\dfrac{T_f}{T_i}=1-\\dfrac{564K}{1073K}=0.475" or "47.5\\%;"
Answer: "a) T_f=564K;"
"b)P=2.12\\sdot10^5W;"
"c) e_c=47.5\\%."
Comments
Leave a comment