The strain energy formula
"U=F\\delta\/2",
where "\\delta=" compression, "F=" force applied. So,
"U_2\/U_1=(F\\delta_2\/2)\/(F\\delta_1\/2)=\\delta_2\/\\delta_1."
"\\delta_1=\\frac{FL}{A_1E}" and "\\delta_2=\\frac{F(1\/3)L}{A_2E}+\\frac{F(1\/3)L}{A_1E}+\\frac{F(1\/3)L}{A_1E}="
"=\\frac{F(1\/3)L}{A_2E}+\\frac{F(2\/3)L}{A_1E}."
"U_2\/U_1=\\delta_2\/\\delta_1=\\frac{\\frac{F(1\/3)L}{A_2E}+\\frac{F(2\/3)L}{A_1E}}{\\frac{FL}{A_1E}}=\\frac{A_1+2A_2}{3A_2}="
"=\\frac{\\pi d_1^2\/4+2\\pi d_2^2\/4}{3\\pi d_2^2\/4}=\\frac{d_1^2+2d_2^2}{3d_2^2}=\\frac{0.05^2+2\\cdot0.025^2}{3\\cdot0.025^2}=2(J)"
Comments
Leave a comment