As per the given question,
"F=6\\pi \\eta rV_t"
"\\eta= 1.8\\times 10^{ - 5} kg\/m.s"
radius (r)=0.65cm
Density of oil drop "\\rho_{oil}=9.20 \\times 10^2 kg\/m^3"
Density of the air"\\rho_{air}=1.29 \\times 10^{2}kg\/m^3"
We know that,
downward force =Upward force
Let the mass of the drop is M and g is the gravitational acceleration, "F_{th}" is the thrust force on the drop, let V is the volume of the drop is V,
So, "Mg-F_{th}=6\\pi \\eta rV_t"
"\\Rightarrow V_t=\\dfrac{Mg-\\rho_{air}\\times V}{6\\pi \\eta r}"
"\\Rightarrow V_t=\\dfrac{V(\\rho_{oil}-\\rho_{air})}{6\\pi \\eta r}"
Now, substituting the values in the above,
"V_t=\\dfrac{(\\rho_{oil}-\\rho_{air}) \\times \\dfrac{4}{3}\\times \\pi r^3}{6\\pi \\eta r}"
"\\Rightarrow V_t=\\dfrac{2(\\rho_{oil}-\\rho_{air}) \\pi r^2}{9\\pi\\times \\eta}=\\dfrac{(\\rho_{oil}-\\rho_{air}) r^2}{9\\eta}"
"\\Rightarrow V_t=\\dfrac{2\\times(9.20-1.29)\\times 10^{2}\\times 0.65\\times 10^{-2}}{6\\times 1.8\\times 10^{-5}}" m/sec
"V_t=\\dfrac{2\\times 7.91\\times 0.65}{9\\times 10^{-5}}=\\dfrac{10.283\\times 10^{5}}{9}m\/sec"
"\\Rightarrow V_t=1.14\\times10^{5} m\/sec"
Comments
Leave a comment