Question #104028
Define adiabatic lapse rate and show that
dT/dh= {(–γ–1)/γ} (Mg/R)
Plot a graph between atmospheric temperature with altitude.
1
Expert's answer
2020-02-27T10:12:19-0500

The air parcel undergoes only adiabatic transformations dQ=0dQ=0, and the atmosphere is in hydrostatic equilibrium.


dp=gρdhdp=-g\cdot \rho \cdot dh


dpρ=gdh\frac{dp}{\rho}=-g\cdot dh (1)


dA=dUpdV=mcVdT-dA=dU\to -pdV=mc_VdT


d(pV)=pdV+Vdpd(pV)=pdV+Vdp


Vdpd(pV)=mcVdTVdp-d(pV)=mc_VdT


From the ideal gas low pV=nRTpV=nRT


Vdpd(nRT)=VdpnRdT=mcVdTVdp-d(nRT)=Vdp-nRdT=mc_VdT

1ρdpnnMRdT=cVdT1ρdp=(RM+cV)dT\frac{1}{\rho}dp-\frac{n}{nM}RdT=c_VdT\to \frac{1}{\rho}dp=(\frac{R}{M}+c_V)dT\to


dpρ=cpdT\frac {dp}{\rho}=c_pdT (2)


cpdT=gdhc_pdT=-g\cdot dh


Combining (1) with the equation (2), yields


dTdh=gcp\frac{dT}{dh}=-\frac{g}{c_p} or dTdh=gγR(γ1)MdTdh=γ1γMgR\frac{dT}{dh}=-\frac{g}{\frac{\gamma R}{(\gamma-1)M}}\to \frac{dT}{dh}=-\frac{\gamma-1}{\gamma}\frac{Mg}{R}






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS