The air parcel undergoes only adiabatic transformations dQ=0, and the atmosphere is in hydrostatic equilibrium.
dp=−g⋅ρ⋅dh
ρdp=−g⋅dh (1)
−dA=dU→−pdV=mcVdT
d(pV)=pdV+Vdp
Vdp−d(pV)=mcVdT
From the ideal gas low pV=nRT
Vdp−d(nRT)=Vdp−nRdT=mcVdT
ρ1dp−nMnRdT=cVdT→ρ1dp=(MR+cV)dT→
ρdp=cpdT (2)
cpdT=−g⋅dh
Combining (1) with the equation (2), yields
dhdT=−cpg or dhdT=−(γ−1)MγRg→dhdT=−γγ−1RMg
Comments