The air parcel undergoes only adiabatic transformations "dQ=0", and the atmosphere is in hydrostatic equilibrium.
"dp=-g\\cdot \\rho \\cdot dh"
"\\frac{dp}{\\rho}=-g\\cdot dh" (1)
"-dA=dU\\to -pdV=mc_VdT"
"d(pV)=pdV+Vdp"
"Vdp-d(pV)=mc_VdT"
From the ideal gas low "pV=nRT"
"Vdp-d(nRT)=Vdp-nRdT=mc_VdT"
"\\frac{1}{\\rho}dp-\\frac{n}{nM}RdT=c_VdT\\to \\frac{1}{\\rho}dp=(\\frac{R}{M}+c_V)dT\\to"
"\\frac {dp}{\\rho}=c_pdT" (2)
"c_pdT=-g\\cdot dh"
Combining (1) with the equation (2), yields
"\\frac{dT}{dh}=-\\frac{g}{c_p}" or "\\frac{dT}{dh}=-\\frac{g}{\\frac{\\gamma R}{(\\gamma-1)M}}\\to \\frac{dT}{dh}=-\\frac{\\gamma-1}{\\gamma}\\frac{Mg}{R}"
Comments
Leave a comment