Answer to Question #99743 in Mechanics | Relativity for AbdulRehman

Question #99743
How about some practice working with hyperbolic trig functions? Recall
that
sinh θ =
e
θ − e
−θ
2
,
cosh θ =
e
θ + e
−θ
2
,
and
tanh θ =
sinh θ
cosh θ
.
(a) Verify that cosh2
θ − sinh2
θ = 1.
(b) Verify that
tanh θ1 + tanh θ2
1 + tanh θ1 tanh θ2
= tanh(θ1 + θ2),
so that the law of composition of velocities from last week just means
that “boost parameters add.”
1
Expert's answer
2019-12-05T10:21:00-0500

a)


cosh2θ=(0.5(eθ+eθ))2=0.25(e2θ+2+e2θ)\cosh^2{\theta}=(0.5(e^\theta+e^{-\theta}))^2=0.25(e^{2\theta}+2+e^{-2\theta})

sinh2θ=(0.5(eθeθ))2=0.25(e2θ2+e2θ)\sinh^2{\theta}=(0.5(e^\theta-e^{-\theta}))^2=0.25(e^{2\theta}-2+e^{-2\theta})

cosh2θsinh2θ=0.25(2(2))=1\cosh^2{\theta}-\sinh^2{\theta}=0.25(2-(-2))=1

b)


tanhθ1+tanhθ2=eθ1eθ1eθ1+eθ1+eθ2eθ2eθ2+eθ2\tanh{θ_1} + \tanh{θ_2}=\frac{e^{θ_1}-e^{-θ_1}}{e^{θ_1}+e^{-θ_1}}+\frac{e^{θ_2}-e^{-θ_2}}{e^{θ_2}+e^{-θ_2}}

1+tanhθ1tanhθ2=1+(eθ1eθ1eθ1+eθ1)(eθ2eθ2eθ2+eθ2)1+\tanh{θ_1} \tanh{θ_2}=1+\left(\frac{e^{θ_1}-e^{-θ_1}}{e^{θ_1}+e^{-θ_1}}\right)\left(\frac{e^{θ_2}-e^{-θ_2}}{e^{θ_2}+e^{-θ_2}}\right)

\frac{}{}

tanhθ1+tanhθ21+tanhθ1tanhθ2=eθ1eθ1eθ1+eθ1+eθ2eθ2eθ2+eθ21+(eθ1eθ1eθ1+eθ1)(eθ2eθ2eθ2+eθ2)=eθ1+θ2eθ1θ2eθ1+θ2+eθ1θ2\frac{\tanh{θ_1} + \tanh{θ_2}}{1+\tanh{θ_1} \tanh{θ_2}}=\frac{\frac{e^{θ_1}-e^{-θ_1}}{e^{θ_1}+e^{-θ_1}}+\frac{e^{θ_2}-e^{-θ_2}}{e^{θ_2}+e^{-θ_2}} }{1+\left(\frac{e^{θ_1}-e^{-θ_1}}{e^{θ_1}+e^{-θ_1}}\right)\left(\frac{e^{θ_2}-e^{-θ_2}}{e^{θ_2}+e^{-θ_2}}\right)}=\frac{e^{θ_1+θ_2}-e^{-θ_1-θ_2}}{e^{θ_1+θ_2}+e^{-θ_1-θ_2}}

tanhθ1+tanhθ21+tanhθ1tanhθ2=tanh(θ1+θ2)\frac{\tanh{θ_1} + \tanh{θ_2}}{1+\tanh{θ_1} \tanh{θ_2}}=\tanh({θ_1+θ_2})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment