Answer to Question #99743 in Mechanics | Relativity for AbdulRehman
2019-12-01T02:10:00-05:00
How about some practice working with hyperbolic trig functions? Recall
that
sinh θ =
e
θ − e
−θ
2
,
cosh θ =
e
θ + e
−θ
2
,
and
tanh θ =
sinh θ
cosh θ
.
(a) Verify that cosh2
θ − sinh2
θ = 1.
(b) Verify that
tanh θ1 + tanh θ2
1 + tanh θ1 tanh θ2
= tanh(θ1 + θ2),
so that the law of composition of velocities from last week just means
that “boost parameters add.”
1
2019-12-05T10:21:00-0500
a)
cosh 2 θ = ( 0.5 ( e θ + e − θ ) ) 2 = 0.25 ( e 2 θ + 2 + e − 2 θ ) \cosh^2{\theta}=(0.5(e^\theta+e^{-\theta}))^2=0.25(e^{2\theta}+2+e^{-2\theta}) cosh 2 θ = ( 0.5 ( e θ + e − θ ) ) 2 = 0.25 ( e 2 θ + 2 + e − 2 θ )
sinh 2 θ = ( 0.5 ( e θ − e − θ ) ) 2 = 0.25 ( e 2 θ − 2 + e − 2 θ ) \sinh^2{\theta}=(0.5(e^\theta-e^{-\theta}))^2=0.25(e^{2\theta}-2+e^{-2\theta}) sinh 2 θ = ( 0.5 ( e θ − e − θ ) ) 2 = 0.25 ( e 2 θ − 2 + e − 2 θ )
cosh 2 θ − sinh 2 θ = 0.25 ( 2 − ( − 2 ) ) = 1 \cosh^2{\theta}-\sinh^2{\theta}=0.25(2-(-2))=1 cosh 2 θ − sinh 2 θ = 0.25 ( 2 − ( − 2 )) = 1 b)
tanh θ 1 + tanh θ 2 = e θ 1 − e − θ 1 e θ 1 + e − θ 1 + e θ 2 − e − θ 2 e θ 2 + e − θ 2 \tanh{θ_1} + \tanh{θ_2}=\frac{e^{θ_1}-e^{-θ_1}}{e^{θ_1}+e^{-θ_1}}+\frac{e^{θ_2}-e^{-θ_2}}{e^{θ_2}+e^{-θ_2}} tanh θ 1 + tanh θ 2 = e θ 1 + e − θ 1 e θ 1 − e − θ 1 + e θ 2 + e − θ 2 e θ 2 − e − θ 2
1 + tanh θ 1 tanh θ 2 = 1 + ( e θ 1 − e − θ 1 e θ 1 + e − θ 1 ) ( e θ 2 − e − θ 2 e θ 2 + e − θ 2 ) 1+\tanh{θ_1} \tanh{θ_2}=1+\left(\frac{e^{θ_1}-e^{-θ_1}}{e^{θ_1}+e^{-θ_1}}\right)\left(\frac{e^{θ_2}-e^{-θ_2}}{e^{θ_2}+e^{-θ_2}}\right) 1 + tanh θ 1 tanh θ 2 = 1 + ( e θ 1 + e − θ 1 e θ 1 − e − θ 1 ) ( e θ 2 + e − θ 2 e θ 2 − e − θ 2 ) \frac{}{}
tanh θ 1 + tanh θ 2 1 + tanh θ 1 tanh θ 2 = e θ 1 − e − θ 1 e θ 1 + e − θ 1 + e θ 2 − e − θ 2 e θ 2 + e − θ 2 1 + ( e θ 1 − e − θ 1 e θ 1 + e − θ 1 ) ( e θ 2 − e − θ 2 e θ 2 + e − θ 2 ) = e θ 1 + θ 2 − e − θ 1 − θ 2 e θ 1 + θ 2 + e − θ 1 − θ 2 \frac{\tanh{θ_1} + \tanh{θ_2}}{1+\tanh{θ_1} \tanh{θ_2}}=\frac{\frac{e^{θ_1}-e^{-θ_1}}{e^{θ_1}+e^{-θ_1}}+\frac{e^{θ_2}-e^{-θ_2}}{e^{θ_2}+e^{-θ_2}}
}{1+\left(\frac{e^{θ_1}-e^{-θ_1}}{e^{θ_1}+e^{-θ_1}}\right)\left(\frac{e^{θ_2}-e^{-θ_2}}{e^{θ_2}+e^{-θ_2}}\right)}=\frac{e^{θ_1+θ_2}-e^{-θ_1-θ_2}}{e^{θ_1+θ_2}+e^{-θ_1-θ_2}} 1 + t a n h θ 1 t a n h θ 2 t a n h θ 1 + t a n h θ 2 = 1 + ( e θ 1 + e − θ 1 e θ 1 − e − θ 1 ) ( e θ 2 + e − θ 2 e θ 2 − e − θ 2 ) e θ 1 + e − θ 1 e θ 1 − e − θ 1 + e θ 2 + e − θ 2 e θ 2 − e − θ 2 = e θ 1 + θ 2 + e − θ 1 − θ 2 e θ 1 + θ 2 − e − θ 1 − θ 2
tanh θ 1 + tanh θ 2 1 + tanh θ 1 tanh θ 2 = tanh ( θ 1 + θ 2 ) \frac{\tanh{θ_1} + \tanh{θ_2}}{1+\tanh{θ_1} \tanh{θ_2}}=\tanh({θ_1+θ_2}) 1 + t a n h θ 1 t a n h θ 2 t a n h θ 1 + t a n h θ 2 = tanh ( θ 1 + θ 2 )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Leave a comment