First a diagram of the situation is made.
The components are obtained for each displacement.
# Displacement 1
Horizontal axis component
c o s ( 3 7 0 ) = D 1 x D 1 D 1 x = D 1 c o s ( 3 7 0 ) D 1 x = 500 m ∗ c o s ( 3 7 0 ) D 1 x = 399 m cos(37^{0})=\frac{D_{1x}}{D_{1}} \\D_{1x}=D_{1}cos(37^{0}) \\ D_{1x}=500m*cos(37^{0}) \\D_{1x}=399m cos ( 3 7 0 ) = D 1 D 1 x D 1 x = D 1 cos ( 3 7 0 ) D 1 x = 500 m ∗ cos ( 3 7 0 ) D 1 x = 399 m
Vertical axis component
s i n ( 3 7 0 ) = D 1 y D 1 D 1 y = D 1 s i n ( 3 7 0 ) D 1 y = 500 m ∗ s i n ( 3 7 0 ) D 1 y = 301 m sin(37^{0})=\frac{D_{1y}}{D_{1}} \\D_{1y}=D_{1}sin(37^{0}) \\ D_{1y}=500m*sin(37^{0}) \\D_{1y}=301m s in ( 3 7 0 ) = D 1 D 1 y D 1 y = D 1 s in ( 3 7 0 ) D 1 y = 500 m ∗ s in ( 3 7 0 ) D 1 y = 301 m
Expressing as a vector
D 1 ⃗ = ( 399 i + 301 j ) [ m ] \vec{D_{1}}=(399i+301j)[m] D 1 = ( 399 i + 301 j ) [ m ]
# Displacement 2
Horizontal axis component
s i n ( 6 0 0 ) = D 2 x D 2 D 2 x = D 2 s i n ( 6 0 0 ) D 2 x = 1000 m ∗ s i n ( 6 0 0 ) D 2 x = 866 m sin(60^{0})=\frac{D_{2x}}{D_{2}} \\D_{2x}=D_{2}sin(60^{0}) \\ D_{2x}=1000m*sin(60^{0}) \\D_{2x}=866m s in ( 6 0 0 ) = D 2 D 2 x D 2 x = D 2 s in ( 6 0 0 ) D 2 x = 1000 m ∗ s in ( 6 0 0 ) D 2 x = 866 m
Vertical axis component
c o s ( 6 0 0 ) = D 2 y D 2 D 2 y = D 2 c o s ( 6 0 0 ) D 2 y = 1000 m ∗ c o s ( 6 0 0 ) D 2 y = 500 m cos(60^{0})=\frac{D_{2y}}{D_{2}} \\D_{2y}=D_{2}cos(60^{0}) \\ D_{2y}=1000m*cos(60^{0}) \\D_{2y}=500m cos ( 6 0 0 ) = D 2 D 2 y D 2 y = D 2 cos ( 6 0 0 ) D 2 y = 1000 m ∗ cos ( 6 0 0 ) D 2 y = 500 m
Expressing as a vector
D 2 ⃗ = ( − 866 i + 500 j ) [ m ] \vec{D_{2}}=(-866i+500j)[m] D 2 = ( − 866 i + 500 j ) [ m ]
The total displacement is
⃗ \vec{} D R ⃗ = D 1 ⃗ + D 2 ⃗ D R ⃗ = ( 399 i + 301 j ) [ m ] + ( − 866 i + 500 j ) [ m ] D R ⃗ = [ ( 399 − 866 ) i + ( 301 + 500 ) j ] [ m ] D R ⃗ = ( − 467 i + 801 ) [ m ] \vec{D_{R}}=\vec{D_{1}}+\vec{D_{2}} \\ \vec{D_{R}}=(399i+301j)[m] +(-866i+500j)[m]\\ \vec{D_{R}}=[(399-866)i+(301+500)j][m] \\ \vec{D_{R}}=(-467i+801)[m] D R = D 1 + D 2 D R = ( 399 i + 301 j ) [ m ] + ( − 866 i + 500 j ) [ m ] D R = [( 399 − 866 ) i + ( 301 + 500 ) j ] [ m ] D R = ( − 467 i + 801 ) [ m ]
The run module is calculated using the Pythagorean theorem.
∣ D R ⃗ ∣ = ( − 467 ) 2 + ( 801 ) 2 ∣ D R ⃗ ∣ = 927 m |\vec{D_{R}}|=\sqrt{(-467)^{2}+(801)^{2}} \\ |\vec{D_{R}}|=927m ∣ D R ∣ = ( − 467 ) 2 + ( 801 ) 2 ∣ D R ∣ = 927 m
the module of the run is ∣ D R ⃗ ∣ = 927 m \boxed{|\vec{D_{R}}|=927m} ∣ D R ∣ = 927 m
The direction with respect to the + i axis is
t a n θ = ( 801 − 467 ) θ = t a n − 1 ( 801 − 467 ) θ = − 59.7 5 0 + 18 0 0 = 12 0 0 tan\theta=(\frac{801}{-467}) \\ \theta=tan^{-1}(\frac{801}{-467}) \\ \theta=-59.75^{0}+180^{0}=120^{0} t an θ = ( − 467 801 ) θ = t a n − 1 ( − 467 801 ) θ = − 59.7 5 0 + 18 0 0 = 12 0 0 Measured from the East direction (+ i)
Note: Being a negative component, the resulting angle will be reflected as in quadranta IV, but 180 degrees must be added to reflect it in quadrant II
with respect to the north the angle is 12 0 0 − 9 0 0 = 3 0 0 120^{0}-90^{0}=30^{0} 12 0 0 − 9 0 0 = 3 0 0
Expressing the closest coordinate axis.
30°west by north
the the orientation of the run is 30°west by north \boxed{ \text{ 30°west by north}} 30°west by north
Comments