The position vector for a particle is given by equation
"{\\bf r}(t)=(at+b){\\bf\\hat i}+(ct^2+d){\\bf\\hat j}"
"{\\bf r}(t)=(2.00t+1.40){\\bf\\hat i}+(0.129t^2+1.12){\\bf\\hat j}"
(a) The average velocity of a particle
"{\\bf v}_{ave}=\\frac{{\\bf r_2}-{\\bf r_1}}{t_2-t_1}"
"{\\bf r}_1={\\bf r}(t_1)=(2.00\\times 2.20+1.40){\\bf\\hat i}+(0.129\\times (2.20)^2+1.12){\\bf\\hat j}"
"=5.80{\\bf\\hat i}+1.74{\\bf\\hat j}"
"{\\bf r}_2={\\bf r}(t_2)=(2.00\\times 4.05+1.40){\\bf\\hat i}+(0.129\\times (4.05)^2+1.12){\\bf\\hat j}"
"=9.50{\\bf\\hat i}+3.24{\\bf\\hat j}"
So
(b) The velocity of a particle
"{\\bf v}(t)={\\bf r}'(t)=[(2.00t+1.40){\\bf\\hat i}+(0.129t^2+1.12){\\bf\\hat j}]'"
"=2.00{\\bf\\hat i}+0.258t{\\bf\\hat j}"
"{\\bf v}(2.20)=2.00{\\bf\\hat i}+0.258\\times 2.20{\\bf\\hat j}=2.00{\\bf\\hat i}+0.568{\\bf\\hat j}"
The speed of a particle
Comments
Leave a comment