Establishing a reference system:
Expressing each Force as a vector
"\\vec{F_{A}}=-4(\\hat{j})lb\\\\ \\vec{F_{B}}=14(\\hat{i})lb"
"\\vec{F_{C}}=??"
Components of the resulting vector "\\vec{R}"
"cos(27^{0})=\\frac{ F_{R}}{F_{Rx} }\\\\ F_{Rx}=F_{R}*cos(27^{0})\\\\ F_{Rx}=9lb*cos(27^{0})\\\\F_{Rx}=8lb"
"sin(27^{0})=\\frac{ F}{F_{Ry }}\\\\ F_{Ry}=R*sin(27^{0})\\\\ F_{Ry}=9lb*sin(27^{0})\\\\F_{Ry}=4lb"
Finally "\\vec{F_R}=(8\\hat{i}+4\\hat{j})lb"
The sum of the vectors is "\\vec{F_{R}}=\\vec{F_{A}}+\\vec{F_{B}}+\\vec{F_{C}}"
The force Fc is
: "\\vec{F_{R}}=\\vec{F_{A}}+\\vec{F_{B}}+\\vec{F_{C}}\\\\ \\vec{F_{C}}=\\vec{F_{R}}-\\vec{F_{A}}-\\vec{F_{B}}"
Evaluating numerically
"\\vec{F_{C}}=(8\\hat{i}+4\\hat{j})lb-4(\\hat{j})lb-14(\\hat{i})lb\\\\ \\vec{F_{C}}=(8\\hat{i}-14\\hat{i}+4\\hat{j}-4\\hat{j})lb \\\\ \\vec{F_{C}}=-6\\hat{i}lb"
The magnitude is
"\\vec{F_{C}}=|-6i|lb\\\\\\vec{F_{C}}=6lb"
The direction is West (-i)
The direction is determined by the unit vector of the force Fc expressed as a vector, which indicates -i that is, West
Comments
Leave a comment