Consider the schematic figure:
The 2nd Newton's law applied to the current problem states:
"m\\vec{a} = m \\vec{g} + \\vec{T}"
According to the conditions given, the centripetal force is horizontal. Thus, making the horizontal projection of the equation above, we obtain:
"m a_{c.p.} = T \\sin{\\alpha} \\quad \\Rightarrow \\quad T = \\frac{m a_{c.p.}}{\\sin{\\alpha}}"
The centripetal acceleration can be calculated as:
"a_{c.p.} = \\frac{v^2}{r} = \\frac{v^2}{l \\sin{\\alpha}}"
Finally, we derive:
"T = \\frac{m v^2}{l \\sin^2{\\alpha}}"
Substituting the numerical values, we obtain:
"T = \\frac{0.42 \\cdot 3.7^2}{1.2 \\cdot \\sin^2{49^\\circ}} \\approx 8.4 \\, N"
Answer: 8.4 N
Comments
Leave a comment