Answer to Question #90728 in Mechanics | Relativity for Gene Alexis E. Soriano

Question #90728
In figure blocks of mass m1=3kg and m2=4kg are connected by a string of negligible mass and are initially held in a place. The heavier block is tilted at 30 degrees. The coefficient of kinetic friction between the block of mass 3kg and the horizontal surface is 0.3. The coefficient of kinetic friction bock mass 4kg and the inclined surface is 0.1. The pulley has a negligible mass and the friction. once they are released, the blocks move, what then is the tension in the string and accelaration?
1
Expert's answer
2019-06-12T11:14:50-0400


Apply Second Newton's Law to mass m1:

in the x direction


m1a=Tf1={f1=μ1Fn1}=Tμ1Fn1 (1)m_1 \cdot a=T-f_1=\{ f_1=\mu _1 \cdot Fn_1 \}=T-\mu _1 \cdot Fn_1 \space (1)

in the y direction


0=Fn1m1g (2)0=Fn_1 -m_1 \cdot g \space (2)

From (1) and (2):


T=m1a+μ1m1g (3)T = m_1 \cdot a + \mu_1 \cdot m_1 \cdot g \space (3)

Apply Second Newton's Law to mass m2:

in the x direction


m2acos30=Tcos30f2cos30+Fn2sin30m_2 \cdot a \cdot cos30^ \circ=-T \cdot cos30^ \circ - f_2 \cdot cos30^ \circ + Fn_2 \cdot sin30^ \circf2=μ2Fn2  m2a=T+Fn2(1/3μ2) (4)f_2 = \mu_2 \cdot Fn_2 \space \rightarrow \space m_2 \cdot a =-T + Fn_2 \cdot (1/ \sqrt{3} - \mu_2) \space (4)

in the y direction


m2asin30=Tsin30+f2sin30+Fn2cos30m2g-m_2 \cdot a \cdot sin30^ \circ=T \cdot sin30^ \circ + f_2 \cdot sin30^ \circ + Fn_2 \cdot cos30^ \circ - m_2 \cdot gm2a=T+Fn2(3+μ2)2m2g (5)-m_2 \cdot a =T + Fn_2 \cdot (\sqrt{3}+\mu_2) - 2 \cdot m_2 \cdot g \space (5)

From (4) and (5):


m2a=T+(m2a+T)3+μ21/3μ22m2g-m_2 \cdot a =T + (m_2 \cdot a +T) \frac {\sqrt{3}+\mu_2} {1/ \sqrt{3} - \mu_2} - 2 \cdot m_2 \cdot ga=gm1+m2(m22(13μ2)μ1m1)a=\frac g {m_1+m_2} \Big( \frac {m_2} {2} (1-\sqrt{3} \cdot \mu_2)-\mu_1 \cdot m_1 \Big)a=9.81m/s23kg+4kg(4kg2(130.1)0.33kg)1.06ms2a=\frac {9.81 m/s^2} {3 kg+4 kg} \Big( \frac {4 kg} {2} (1-\sqrt{3} \cdot 0.1 ) - 0.3 \cdot 3kg \Big) \cong 1.06 \frac {m} {s^2}

From (3):


T=m1a+μ1m1g=3kg1.06m/s2+0.33kg9.81m/s211.997NT = m_1 \cdot a + \mu_1 \cdot m_1 \cdot g = 3kg \cdot 1.06 m/s^2 + 0.3 \cdot 3kg \cdot 9.81 m/s^2 \cong 11.997 N

Answer:

T12N,  a1m/s2T \cong 12 N ,\space \space a \cong 1m/s^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment