The position of SHO is given by equation
"x(t)=3\\sin (4\\pi t)+4\\cos(4\\pi t)"We put
"x(t)=A(\\cos\\phi\\sin (4\\pi t)+\\sin\\phi\\cos(4\\pi t))""=A\\sin(4\\pi t+\\phi)"Here
"A\\cos\\phi=3,\\quad A\\sin\\phi=4"
(i) So, the amplitude of oscillation
"A=\\sqrt{3^2+4^2}=5\\:\\rm{m}"The initial phase
Therefore the equation of motion of SHO
(ii) The frequency of oscillation
"f=\\frac{\\omega}{2\\pi}=\\frac{4\\pi}{2\\pi}=2\\:\\rm{Hz}"(iii) The displacement at time t=0
"x(0)=3\\sin (4\\pi \\times 0)+4\\cos(4\\pi \\times 0)=4\\:\\rm{m}"
Comments
Leave a comment