Question #89129
A body of mass 0.2 kg is suspended from a spring of force constant 100 Nm^-1. The frictional force acting on it is 6v Newton, Write dow: the equation of motion and calculate the period of free oscillations. If
a harmonic force F = 20 cos 20t is applied,
calculate the amplitude of forced oscillations.
1
Expert's answer
2019-05-17T11:50:53-0400

In the absence of oscillations, equilibrium between the force of gravity and the restoring force takes place,Fr=Fgrav{{F}_{r}}={{F}_{grav}} or kx=mgkx=mg (it is assumed that the spring is directed along the x axis). This gives the extension of the spring


x0=mgk=0.2kg10ms2100Nm1=0.02m{{x}_{0}}=\frac{mg}{k}=\frac{0.2\,kg\cdot 10\,m\cdot {{s}^{-2}}}{100\,N\cdot {{m}^{-1}}}=0.02\,m

1) In order to obtain the equation of motion of the pendulum we write Newton's second law


ma=Fel+Ffrma={{F}_{el}}+{{F}_{fr}}

where aa is the acceleration, a=d2xdt2a=\frac{{{d}^{2}}x}{d{{t}^{2}}} ; Fr{{F}_{r}} is the restoring force, Fr=kx{{F}_{r}}=-kx ; Ffr{{F}_{fr}} is the frictional force, Ffr=bv=bdxdt{{F}_{fr}}=-b\cdot v=-b\frac{dx}{dt} (b=6Nsm1)(b=6\,N\cdot s\cdot {{m}^{-1}}) . Then the equation of motion of the pendulum is


md2xdt2=kxbdxdtm\frac{{{d}^{2}}x}{d{{t}^{2}}}=-kx-b\frac{dx}{dt}

or


d2xdt2+bmdxdt+kmx=0\frac{{{d}^{2}}x}{d{{t}^{2}}}+\frac{b}{m}\frac{dx}{dt}+\frac{k}{m}x=0

Solve the equation and find the period of oscillations. To find x we substitute into equation the solution as exponential function x=eλtx={{e}^{\lambda t}} . We get


λ2eλt+bmλeλt+kmeλt=0{{\lambda }^{2}}{{e}^{\lambda t}}+\frac{b}{m}\lambda {{e}^{\lambda t}}+\frac{k}{m}{{e}^{\lambda t}}=0

or


(λ2+bmλ+km)eλt=0\left( {{\lambda }^{2}}+\frac{b}{m}\lambda +\frac{k}{m} \right){{e}^{\lambda t}}=0

Then we get the auxiliary equation


λ2+bmλ+km=0{{\lambda }^{2}}+\frac{b}{m}\lambda +\frac{k}{m}=0

The solution of this equation is


λ=b2m±b24m2km=b2m±ikmb24m2\lambda =-\frac{b}{2m}\pm \sqrt{\frac{{{b}^{2}}}{4{{m}^{2}}}-\frac{k}{m}}=-\frac{b}{2m}\pm i\sqrt{\frac{k}{m}-\frac{{{b}^{2}}}{4{{m}^{2}}}}

where kmb24m2=ω\sqrt{\frac{k}{m}-\frac{{{b}^{2}}}{4{{m}^{2}}}}=\omega  is the angular frequency. The period of free oscillations is


T=2πω=2πkmb24m2T=\frac{2\pi }{\omega }=\frac{2\pi }{\sqrt{\frac{k}{m}-\frac{{{b}^{2}}}{4{{m}^{2}}}}}

Substituting known values m=0.2kg,k=100Nm1,b=6Nsm1m=0.2\,kg,\,\,\,k=100\,N\cdot {{m}^{-1}},\,\,\,b=6\,N\cdot s\cdot {{m}^{-1}} , we get T0.38sT\approx 0.38\,s

2) If a harmonic force F = 20 cos 20t= F0 cos Ωt  is applied, then Newton's second law is


md2xdt2=kxbdxdt+Fm\frac{{{d}^{2}}x}{d{{t}^{2}}}=-kx-b\frac{dx}{dt}+F

Then the equation of motion of the pendulum is


d2xdt2+bmdxdt+kmx=F0mcosΩt\frac{{{d}^{2}}x}{d{{t}^{2}}}+\frac{b}{m}\frac{dx}{dt}+\frac{k}{m}x=\frac{{{F}_{0}}}{m}\cos \Omega t

or


d2xdt2+αdxdt+ω02x=A0cosΩt\frac{{{d}^{2}}x}{d{{t}^{2}}}+\alpha \frac{dx}{dt}+\omega _{0}^{2}x={{A}_{0}}\cos \Omega t

where α=b/m,ω02=b/m,A0=F0/m\alpha =b/m,\,\,\,\omega _{0}^{2}=b/m,\,\,\,{{A}_{0}}={{F}_{0}}/m are denoted.

To calculate the amplitude of forced oscillations we find the particular solution of this equation. We seek a particular solution of the form


xp(t)=Acos  ⁣ ⁣Ω ⁣ ⁣ t+Bsin  ⁣ ⁣Ω ⁣ ⁣ t{{x}_{p}}\left( t \right)=A\text{cos }\!\!\Omega\!\!\text{ }t+B\text{sin }\!\!\Omega\!\!\text{ }t

where A and B are unknowing constants which we now find. Substitute xp(t){{x}_{p}}\left( t \right) into equation


A  ⁣ ⁣Ω ⁣ ⁣ 2cos  ⁣ ⁣Ω ⁣ ⁣ tB  ⁣ ⁣Ω ⁣ ⁣ 2sin  ⁣ ⁣Ω ⁣ ⁣ t+α(A  ⁣ ⁣Ω ⁣ ⁣ sin  ⁣ ⁣Ω ⁣ ⁣ t+B  ⁣ ⁣Ω ⁣ ⁣ cos  ⁣ ⁣Ω ⁣ ⁣ t)-A{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}\text{cos }\!\!\Omega\!\!\text{ }t-B{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}\text{sin }\!\!\Omega\!\!\text{ }t+\alpha \left( -A\text{ }\!\!\Omega\!\!\text{ sin }\!\!\Omega\!\!\text{ }t+B\text{ }\!\!\Omega\!\!\text{ cos }\!\!\Omega\!\!\text{ }t \right)

+ω02(Acos  ⁣ ⁣Ω ⁣ ⁣ t+Bsin  ⁣ ⁣Ω ⁣ ⁣ t)=A0cos  ⁣ ⁣Ω ⁣ ⁣ t+\omega _{0}^{2}\left( A\text{cos }\!\!\Omega\!\!\text{ }t+B\text{sin }\!\!\Omega\!\!\text{ }t \right)={{A}_{0}}\text{cos }\!\!\Omega\!\!\text{ }t

or

(A  ⁣ ⁣Ω ⁣ ⁣ 2+Bα  ⁣ ⁣Ω ⁣ ⁣ +Aω02)cos  ⁣ ⁣Ω ⁣ ⁣ t\left( -A{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}+B\alpha \text{ }\!\!\Omega\!\!\text{ }+A\omega _{0}^{2} \right)\text{cos }\!\!\Omega\!\!\text{ }t

+(B  ⁣ ⁣Ω ⁣ ⁣ 2Aα  ⁣ ⁣Ω ⁣ ⁣ +Bω02)sin  ⁣ ⁣Ω ⁣ ⁣ t=A0cos  ⁣ ⁣Ω ⁣ ⁣ t+\left( -B{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}-A\alpha \text{ }\!\!\Omega\!\!\text{ }+B\omega _{0}^{2} \right)\text{sin }\!\!\Omega\!\!\text{ }t={{A}_{0}}\text{cos }\!\!\Omega\!\!\text{ }t

This is true if


A  ⁣ ⁣Ω ⁣ ⁣ 2+Bα  ⁣ ⁣Ω ⁣ ⁣ +Aω02=A0-A{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}+B\alpha \text{ }\!\!\Omega\!\!\text{ }+A\omega _{0}^{2}={{A}_{0}}

and

B  ⁣ ⁣Ω ⁣ ⁣ 2Aα  ⁣ ⁣Ω ⁣ ⁣ +Bω02=0-B{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}-A\alpha \text{ }\!\!\Omega\!\!\text{ }+B\omega _{0}^{2}=0

Solving this system of equation we get


A=A0(ω02  ⁣ ⁣Ω ⁣ ⁣ 2)(ω02  ⁣ ⁣Ω ⁣ ⁣ 2)2+α2  ⁣ ⁣Ω ⁣ ⁣ 2A=\frac{{{A}_{0}}\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}{{{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}^{2}}+{{\alpha }^{2}}{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}}

B=A0α  ⁣ ⁣Ω ⁣ ⁣ (ω02  ⁣ ⁣Ω ⁣ ⁣ 2)2+α2  ⁣ ⁣Ω ⁣ ⁣ 2B=\frac{{{A}_{0}}\alpha \text{ }\!\!\Omega\!\!\text{ }}{{{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}^{2}}+{{\alpha }^{2}}{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}}

Then the particular solution is

xp(t)=A0((ω02  ⁣ ⁣Ω ⁣ ⁣ 2)cos  ⁣ ⁣Ω ⁣ ⁣ t(ω02  ⁣ ⁣Ω ⁣ ⁣ 2)2+α2  ⁣ ⁣Ω ⁣ ⁣ 2+α  ⁣ ⁣Ω ⁣ ⁣ sin  ⁣ ⁣Ω ⁣ ⁣ t(ω02  ⁣ ⁣Ω ⁣ ⁣ 2)2+α2  ⁣ ⁣Ω ⁣ ⁣ 2){{x}_{p}}\left( t \right)={{A}_{0}}\left( \frac{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)\text{cos }\!\!\Omega\!\!\text{ }t}{{{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}^{2}}+{{\alpha }^{2}}{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}}+\frac{\alpha \text{ }\!\!\Omega\!\!\text{ sin }\!\!\Omega\!\!\text{ }t}{{{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}^{2}}+{{\alpha }^{2}}{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}} \right)

Denote


cosφ=(ω02  ⁣ ⁣Ω ⁣ ⁣ 2)(ω02  ⁣ ⁣Ω ⁣ ⁣ 2)2+α2  ⁣ ⁣Ω ⁣ ⁣ 2,  ⁣ ⁣  ⁣ ⁣  ⁣ ⁣  ⁣ ⁣  ⁣ ⁣  ⁣ ⁣  ⁣ ⁣  ⁣ ⁣ sinφ=α  ⁣ ⁣Ω ⁣ ⁣ (ω02  ⁣ ⁣Ω ⁣ ⁣ 2)2+α2  ⁣ ⁣Ω ⁣ ⁣ 2\text{cos}\varphi =\frac{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}{\sqrt{{{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}^{2}}+{{\alpha }^{2}}{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}}},\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ sin}\varphi =\frac{\alpha \text{ }\!\!\Omega\!\!\text{ }}{\sqrt{{{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}^{2}}+{{\alpha }^{2}}{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}}}

then


xp(t)=A0(ω02  ⁣ ⁣Ω ⁣ ⁣ 2)2+α2  ⁣ ⁣Ω ⁣ ⁣ 2(cosφcos  ⁣ ⁣Ω ⁣ ⁣ t+sinφsin  ⁣ ⁣Ω ⁣ ⁣ t){{x}_{p}}\left( t \right)=\frac{{{A}_{0}}}{\sqrt{{{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}^{2}}+{{\alpha }^{2}}{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}}}\left( \text{cos}\varphi \text{cos }\!\!\Omega\!\!\text{ }t+\text{sin}\varphi \text{sin }\!\!\Omega\!\!\text{ }t \right)

or


xp(t)=A0(ω02  ⁣ ⁣Ω ⁣ ⁣ 2)2+α2  ⁣ ⁣Ω ⁣ ⁣ 2cos(  ⁣ ⁣Ω ⁣ ⁣ tφ){{x}_{p}}\left( t \right)=\frac{{{A}_{0}}}{\sqrt{{{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}^{2}}+{{\alpha }^{2}}{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}}}\text{cos}\left( \text{ }\!\!\Omega\!\!\text{ }t-\varphi \right)

The amplitude of forced oscillations is


xf=A0(ω02  ⁣ ⁣Ω ⁣ ⁣ 2)2+α2  ⁣ ⁣Ω ⁣ ⁣ 2{{x}_{f}}=\frac{{{A}_{0}}}{\sqrt{{{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}^{2}}+{{\alpha }^{2}}{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}}}

Substituting Ω=20,

A0=F0m=200.2=100,ω02=km=1000.2=500{{A}_{0}}=\frac{{{F}_{0}}}{m}=\frac{20}{0.2}=100,\,\,\,\omega _{0}^{2}=\frac{k}{m}=\frac{100}{0.2}=500


α=bm=60.2=30\alpha =\frac{b}{m}=\frac{6}{0.2}=30

we get


xf=A0(ω02  ⁣ ⁣Ω ⁣ ⁣ 2)2+α2  ⁣ ⁣Ω ⁣ ⁣ 2=100(500400)2+9004000.164meters{{x}_{f}}=\frac{{{A}_{0}}}{\sqrt{{{\left( \omega _{0}^{2}-{{\text{ }\!\!\Omega\!\!\text{ }}^{2}} \right)}^{2}}+{{\alpha }^{2}}{{\text{ }\!\!\Omega\!\!\text{ }}^{2}}}}=\frac{100}{\sqrt{{{\left( 500-400 \right)}^{2}}+900\cdot 400}}\approx 0.164\,meters

Answer:

the equation of motion of the pendulum is


d2xdt2+bmdxdt+kmx=0\frac{{{d}^{2}}x}{d{{t}^{2}}}+\frac{b}{m}\frac{dx}{dt}+\frac{k}{m}x=0

the period of free oscillations is T0.38sT\approx 0.38\,s

the amplitude of forced oscillations is xf0.164meters{{x}_{f}}\approx 0.164\,meters





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS