Let P - given point.
Coordinate x of P = 0.
Coordinate x of m = x.
Then "F = -kx" , so
"ma = -kx \\\\\nma + kx = 0 \\\\\nm\\ddot{x} + kx = 0"
We have linear differential equation,
Characteristic equation:
"m{\\alpha}^2 + k = 0 \\\\\n\\alpha = \\pm i \\cdot \\omega, \n \\omega = \\sqrt{\\frac{k}{m}}"
So
"x = C_1 \\cdot e^{t\\alpha_1} + C_2 \\cdot e^{t\\alpha_2} = C_1(e^{it\\omega})+C_2(e^{-it\\omega})"
with Euler's formula:
"x = C_1(\\cos(\\omega t) + i\\sin(\\omega t)) + C_2(\\cos(-\\omega t) + i\\sin(-\\omega t))"
"x = (C_1 + C_2)cos(\\omega t)) + (iC_1 - iC_2)(sin(\\omega t))"
Let:
"C_1 + C_2 = C_3 \\\\\niC_1 + iC_2 = C_4 \\\\\n\\sqrt{C_3^2+C_4^2} = A \\\\"
Then:
"(\\frac{C_3}{A})^2 + (\\frac{C_4}{A})^2 = 1 \\\\\n\\frac{C_3}{A} = \\sin \\phi \\\\\n\\frac{C_4}{A} = \\cos \\phi"
"x = C_3\\cos(\\omega t) + C_4\\sin(\\omega t)"
"x = A(\\sin \\phi \\cos(\\omega t) + \\cos \\phi \\sin(\\omega t))"
- harmonic motion equation.
Comments
Leave a comment