Answer to Question #86396 in Mechanics | Relativity for Manisha nayak
Calculate the area of a triangle whose vertices are given by (3,-1,2),(1,-1,2),(4,-2,1)
1
2019-03-15T12:45:45-0400
Let
"A=(3,-1,2),\\quad B=(1,-1,2), \\quad C=(4,-2,1)"So
"\\overrightarrow{AB}=(1-3,-1-(-1),2-2)=(-2,0,0)\\\\\n\\overrightarrow{AC}=(4-3,-2-(-1),1-2)=(1,-1,-1)"
The vector product
"[\\overrightarrow{AB}\\times \\overrightarrow{AC}]=\\begin{vmatrix}\n \\hat i & \\hat j & \\hat k\\\\\n -2 & 0 & 0\\\\\n1 & -1 & -1\n\\end{vmatrix}=-2\\hat j+2\\hat k" The area of the triangle
"A=\\frac{1}{2}|[\\overrightarrow{AB}\\times \\overrightarrow{AC}]|=\\frac{1}{2}\\sqrt{(-2)^2+2^2}=\\sqrt{2}"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment