The equation of trajectory of a ball
y(x)=y_0+x tan〖θ-(gx^2)/(2v_0^2 cos^2θ )〗
Therefore
y(35.0)=0+35.0 tan〖40.0°-(9.81×〖35.0〗^2)/(2×〖20.0〗^2 cos^2〖40.0°〗 )〗=3.77 m
Since y(35.0)>h=3.0 m, so the ball will go over fence.
The components of the ball’s velocity
v_x=v_0 cosθ=20.0 cos〖40.0°=15.3 m/s〗
v_y=v_0 sinθ-gt
Since
x=v_x t
We obtain
t=x/v_x =35.0/15.3=2.29 s
The y-component of the ball’s velocity
v_y=v_0 sinθ-gt=20.0 sin〖40.0°-9.81×2.29=-9.61 m/s〗
The magnitude of velocity
v=√(v_x^2+v_y^2 )=√(〖15.3〗^2+(-9.61)^2 )=18.1 m/s
The direction
θ=tan^(-1)〖v_y/v_x =tan^(-1)〖(-9.61)/18.1=-28.0° or 28.0° below the horizon〗 〗
Answers:
Ball will go over fence
18.1 m/s (28.0° below the horizon)
Comments
Leave a comment