m=25 kg
D=75 cm=0.75 m
M=1200 kg
ϑ=120 km/h
〖KE〗_R/〖KE〗_Tot -?
Solution.
Total kinetic energy of the car equals to the sum of translational kinetic energy of the car and rotational energy of the tires:
〖KE〗_Tot=〖KE〗_T+〖KE〗_R (1)
Translational kinetic energy of the car:
〖KE〗_T=(Mϑ^2)/2=(1200∙〖120〗^2)/2=8640000 (J)
Rotational energy of the tires:
〖KE〗_R=4(1/2 Iω^2 )=2Iω^2 (2)
Moment of inertia of the tire:
I=1/2 mR^2 (3)
Angular velocity:
ω=ϑ/R (4)
Let’s substitute (3) and (4) into (2):
〖KE〗_R=mR^2 (ϑ/R)^2=mϑ^2=25∙〖120〗^2=360000 (J)
Than:
〖KE〗_Tot=8640000+360000=9000000 (J)
〖KE〗_R/〖KE〗_Tot =360000/9000000=0.04=4%
Answer: 〖KE〗_R/〖KE〗_Tot =0.04=4%
Comments
Leave a comment