We can find the angle between the two vectors from the formula:
"cos\\alpha = \\frac{\\overrightarrow{A} \\cdot \\overrightarrow{B}}{\\lvert \\overrightarrow{A} \\rvert \\cdot \\lvert \\overrightarrow{B} \\rvert},"here,
"\\overrightarrow{A} \\cdot \\overrightarrow{B}"is the dot product of two vectors
"\\overrightarrow{A}"and
"\\overrightarrow{B}";
"\\lvert \\overrightarrow{A} \\rvert",
"\\lvert \\overrightarrow{B} \\rvert"are the magnitudes of the vectors
"\\overrightarrow{A}"and
"\\overrightarrow{B}", respectively.
Let's first find the dot product of two vectors
"\\overrightarrow{A}"and
"\\overrightarrow{B}":
"\\overrightarrow{A} \\cdot \\overrightarrow{B} = A_x \\cdot B_x + A_y \\cdot B_y + A_z \\cdot B_z = 2 \\cdot 1 + 3 \\cdot (-6) + 1 \\cdot 1 = -15."Then, let's find the magnitudes of the vectors
"\\overrightarrow{A}"and
"\\overrightarrow{B}":
"\\lvert \\overrightarrow{A} \\rvert =\\sqrt{A_x^2 + A_y^2 + A_z^2} = \\sqrt{2^2 + 3^2 + 1^2} = \\sqrt{14},""\\lvert \\overrightarrow{B} \\rvert =\\sqrt{B_x^2 + B_y^2 + B_z^2} = \\sqrt{1^2 + (-6)^2 + 1^2} = \\sqrt{38}."Finally, we can calculate the angle between two vectors
"\\overrightarrow{A}"and
"\\overrightarrow{B}":
"\\alpha = arccos(\\frac{\\overrightarrow{A} \\cdot \\overrightarrow{B}}{\\lvert \\overrightarrow{A} \\rvert \\cdot \\lvert \\overrightarrow{B} \\rvert}),""\\alpha = arccos(\\frac{-15}{\\sqrt{14} \\cdot \\sqrt{38}}) = 130^ \\circ."Answer:
"\\alpha = 130^ \\circ".
Comments
Leave a comment