Question #84921
Find the angle between the two vectors
A= 2i +3j +k
B = I - 6j +k
1
Expert's answer
2019-02-06T15:25:09-0500

We can find the angle between the two vectors from the formula:

cosα=ABAB,cos\alpha = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\lvert \overrightarrow{A} \rvert \cdot \lvert \overrightarrow{B} \rvert},

here,

AB\overrightarrow{A} \cdot \overrightarrow{B}

is the dot product of two vectors

A\overrightarrow{A}

and

B\overrightarrow{B}

;

A\lvert \overrightarrow{A} \rvert

,

B\lvert \overrightarrow{B} \rvert

are the magnitudes of the vectors

A\overrightarrow{A}

and

B\overrightarrow{B}

, respectively.

Let's first find the dot product of two vectors

A\overrightarrow{A}

and

B\overrightarrow{B}

:

AB=AxBx+AyBy+AzBz=21+3(6)+11=15.\overrightarrow{A} \cdot \overrightarrow{B} = A_x \cdot B_x + A_y \cdot B_y + A_z \cdot B_z = 2 \cdot 1 + 3 \cdot (-6) + 1 \cdot 1 = -15.

Then, let's find the magnitudes of the vectors

A\overrightarrow{A}

and

B\overrightarrow{B}

:

A=Ax2+Ay2+Az2=22+32+12=14,\lvert \overrightarrow{A} \rvert =\sqrt{A_x^2 + A_y^2 + A_z^2} = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14},B=Bx2+By2+Bz2=12+(6)2+12=38.\lvert \overrightarrow{B} \rvert =\sqrt{B_x^2 + B_y^2 + B_z^2} = \sqrt{1^2 + (-6)^2 + 1^2} = \sqrt{38}.

Finally, we can calculate the angle between two vectors

A\overrightarrow{A}

and

B\overrightarrow{B}

:

α=arccos(ABAB),\alpha = arccos(\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\lvert \overrightarrow{A} \rvert \cdot \lvert \overrightarrow{B} \rvert}),α=arccos(151438)=130.\alpha = arccos(\frac{-15}{\sqrt{14} \cdot \sqrt{38}}) = 130^ \circ.

Answer:

α=130\alpha = 130^ \circ

.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS