A neutron in a reactor makes an elastic headon collision with the nucleus of an atom initially at rest. Assume: The mass of the atomic nucleus is about 11.3 the mass of the neutron. What fraction of the neutron’s kinetic energy is transferred to the atomic nucleus?
m = mass of neutron
M = mass of nucleus = 11.3 m
vi = initial velocity of neutron before collision = ?
Vi = initial velocity of nucleus before collision = 0 m/s
vf = final velocity of neutron after collision
Vf = final velocity of nucleus after collision
using conservation of momentum
"mv_i + MV_i = mv_f + MV_f \\\\\n\n(m) v_i + (11.3 m) (0) = m v_f + (11.3 m) V_f \\\\\n\nv_i = v_f + (11.3) V_f \\\\\n\nv_i - v_f = (11.3) V_f \\;\\;\\; eq-1"
using conservation of kinetic energy
"m v^2_i + M V^2_i = m v^2_f + M V^2_f \\\\\n\n(m) v^2_i + (11.3 m) (0)^2 = m v^2_f + (11.3 m) V^2_f \\\\\n\nv^2_i = v^2_f + (11.3) V^2_f \\\\\n\nv^2_i - v^2_f = (11.3) V^2_f \\\\\n\n( v_i - v_f )( v_i + v_f ) = (11.3) V^2_f \\\\\n\n(13.7) V_f ( v_i + v_f ) = (11.3) V^2_f \\\\\n\nv_i + v_f = V_f \\;\\;\\;\\; eq-2"
adding eq-1 and eq-2
"( v_i - v_f ) + ( v_i - v_f ) = (11.3) V_f + V_f \\\\\n\n2 v_i = 12.3 V_f \\\\\n\nv_i = 6.15 V_f"
fraction of energy transferred is given as
"fraction = \\frac{(0.5) MV^2_f }{(0.5) m v^2_i } \\\\\n\nfraction = \\frac{M V^2_f }{m v^2_i } \\\\\n\nfraction = \\frac{(11.3 m) V^2_f }{m (6.15 V_f )^2 } \\\\\n\nfraction = \\frac{11.3}{(6.15)^2} = 0.298 \u2248 0.3"
Comments
Leave a comment