Question #276502

An air table has two pucks; one with a mass of 0.50kg and the other with a mass of 1.50kg.  Initially the smaller puck is moving at 0.40m/s, 0° while the larger puck is moving at 0.40m/s, 180°.  After the collision, the smaller puck is moving at 0.79m/s, 196°.  What is the velocity (magnitude and direction) of the larger puck after the collision?



1
Expert's answer
2021-12-06T16:41:49-0500

m1=0.5kgm_1= 0.5kg

v1=0.4msv_1= 0.4\frac{m}{s}

α1=0°\alpha_1= 0\degree

v1(v1cosα1,v1sinα1)\vec v_1(v_1\cos \alpha_1,v_1\sin \alpha_1)

v1(0.4;0)\vec v_1(0.4;0)

m2=1.5kgm_2= 1.5kg

v2=0.4msv_2= 0.4\frac{m}{s}

α2=180°\alpha_2= 180\degree

v2(v2cosα2,v1sinα2)\vec v_2(v_2\cos \alpha_2,v_1\sin \alpha_2)

v2(0.4;0)\vec v_2(-0.4;0)

u1=0.79msu_1 = 0.79\frac{m}{s}

α1=196°\alpha'_1= 196\degree

u1(u1cosα1,u1sinα1)\vec u_1(u_1\cos \alpha'_1,u_1\sin \alpha'_1)

u1(0,76;0.22)\vec u_1(-0,76;-0.22)

According to the law of momentum:\text{According to the law of momentum:}

m1v1+m2v2=m1u1+m2u2m_1\vec v_1+ m_2\vec v_2=m_1\vec u_1+m_2\vec u_2

0.5(0.4;0)+1.5(0.4;0)=0.5(0.76;0.22)+1.5(u2x;u2y)0.5*(0.4;0)+1.5*(-0.4;0)= 0.5*(-0.76;-0.22)+1.5*(u_{2x};u_{2y})

u2(0.013;0.073)\vec u_2(-0.013;0.073)

u2=0.0132+0.0732=0.074msu_2=\sqrt{0.013^2+0.073^2}=0.074\frac{m}{s}

cosα2=0.0130.074=0.17568\cos \alpha'_2=\frac{-0.013}{0.074}=-0.17568

α2=100.11°\alpha'_2= 100.11\degree


Answer: u2=0.074ms;α2=100.11°\text{Answer: }u_2=0.074\frac{m}{s};\alpha'_2= 100.11\degree


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS