An air table has two pucks; one with a mass of 0.50kg and the other with a mass of 1.50kg. Initially the smaller puck is moving at 0.40m/s, 0° while the larger puck is moving at 0.40m/s, 180°. After the collision, the smaller puck is moving at 0.79m/s, 196°. What is the velocity (magnitude and direction) of the larger puck after the collision?
"m_1= 0.5kg"
"v_1= 0.4\\frac{m}{s}"
"\\alpha_1= 0\\degree"
"\\vec v_1(v_1\\cos \\alpha_1,v_1\\sin \\alpha_1)"
"\\vec v_1(0.4;0)"
"m_2= 1.5kg"
"v_2= 0.4\\frac{m}{s}"
"\\alpha_2= 180\\degree"
"\\vec v_2(v_2\\cos \\alpha_2,v_1\\sin \\alpha_2)"
"\\vec v_2(-0.4;0)"
"u_1 = 0.79\\frac{m}{s}"
"\\alpha'_1= 196\\degree"
"\\vec u_1(u_1\\cos \\alpha'_1,u_1\\sin \\alpha'_1)"
"\\vec u_1(-0,76;-0.22)"
"\\text{According to the law of momentum:}"
"m_1\\vec v_1+ m_2\\vec v_2=m_1\\vec u_1+m_2\\vec u_2"
"0.5*(0.4;0)+1.5*(-0.4;0)= 0.5*(-0.76;-0.22)+1.5*(u_{2x};u_{2y})"
"\\vec u_2(-0.013;0.073)"
"u_2=\\sqrt{0.013^2+0.073^2}=0.074\\frac{m}{s}"
"\\cos \\alpha'_2=\\frac{-0.013}{0.074}=-0.17568"
"\\alpha'_2= 100.11\\degree"
"\\text{Answer: }u_2=0.074\\frac{m}{s};\\alpha'_2= 100.11\\degree"
Comments
Leave a comment