m 1 = 0.5 k g m_1= 0.5kg m 1 = 0.5 k g
v 1 = 0.4 m s v_1= 0.4\frac{m}{s} v 1 = 0.4 s m
α 1 = 0 ° \alpha_1= 0\degree α 1 = 0°
v ⃗ 1 ( v 1 cos α 1 , v 1 sin α 1 ) \vec v_1(v_1\cos \alpha_1,v_1\sin \alpha_1) v 1 ( v 1 cos α 1 , v 1 sin α 1 )
v ⃗ 1 ( 0.4 ; 0 ) \vec v_1(0.4;0) v 1 ( 0.4 ; 0 )
m 2 = 1.5 k g m_2= 1.5kg m 2 = 1.5 k g
v 2 = 0.4 m s v_2= 0.4\frac{m}{s} v 2 = 0.4 s m
α 2 = 180 ° \alpha_2= 180\degree α 2 = 180°
v ⃗ 2 ( v 2 cos α 2 , v 1 sin α 2 ) \vec v_2(v_2\cos \alpha_2,v_1\sin \alpha_2) v 2 ( v 2 cos α 2 , v 1 sin α 2 )
v ⃗ 2 ( − 0.4 ; 0 ) \vec v_2(-0.4;0) v 2 ( − 0.4 ; 0 )
u 1 = 0.79 m s u_1 = 0.79\frac{m}{s} u 1 = 0.79 s m
α 1 ′ = 196 ° \alpha'_1= 196\degree α 1 ′ = 196°
u ⃗ 1 ( u 1 cos α 1 ′ , u 1 sin α 1 ′ ) \vec u_1(u_1\cos \alpha'_1,u_1\sin \alpha'_1) u 1 ( u 1 cos α 1 ′ , u 1 sin α 1 ′ )
u ⃗ 1 ( − 0 , 76 ; − 0.22 ) \vec u_1(-0,76;-0.22) u 1 ( − 0 , 76 ; − 0.22 )
According to the law of momentum: \text{According to the law of momentum:} According to the law of momentum:
m 1 v ⃗ 1 + m 2 v ⃗ 2 = m 1 u ⃗ 1 + m 2 u ⃗ 2 m_1\vec v_1+ m_2\vec v_2=m_1\vec u_1+m_2\vec u_2 m 1 v 1 + m 2 v 2 = m 1 u 1 + m 2 u 2
0.5 ∗ ( 0.4 ; 0 ) + 1.5 ∗ ( − 0.4 ; 0 ) = 0.5 ∗ ( − 0.76 ; − 0.22 ) + 1.5 ∗ ( u 2 x ; u 2 y ) 0.5*(0.4;0)+1.5*(-0.4;0)= 0.5*(-0.76;-0.22)+1.5*(u_{2x};u_{2y}) 0.5 ∗ ( 0.4 ; 0 ) + 1.5 ∗ ( − 0.4 ; 0 ) = 0.5 ∗ ( − 0.76 ; − 0.22 ) + 1.5 ∗ ( u 2 x ; u 2 y )
u ⃗ 2 ( − 0.013 ; 0.073 ) \vec u_2(-0.013;0.073) u 2 ( − 0.013 ; 0.073 )
u 2 = 0.01 3 2 + 0.07 3 2 = 0.074 m s u_2=\sqrt{0.013^2+0.073^2}=0.074\frac{m}{s} u 2 = 0.01 3 2 + 0.07 3 2 = 0.074 s m
cos α 2 ′ = − 0.013 0.074 = − 0.17568 \cos \alpha'_2=\frac{-0.013}{0.074}=-0.17568 cos α 2 ′ = 0.074 − 0.013 = − 0.17568
α 2 ′ = 100.11 ° \alpha'_2= 100.11\degree α 2 ′ = 100.11°
Answer: u 2 = 0.074 m s ; α 2 ′ = 100.11 ° \text{Answer: }u_2=0.074\frac{m}{s};\alpha'_2= 100.11\degree Answer: u 2 = 0.074 s m ; α 2 ′ = 100.11°
Comments