Question #274869

Block A with mass m_A

mA

​ is placed on a horizontal surface S. Surface S is attached to a vertical axis. Block A is attached to this vertical axis via a massless rope. The distance between block A and the axis is R

R.

Between block A and surface S there is static friction with static friction coefficient \mu_{\rm s}

μs

​.

The whole system rotates around the axis of rotation (see figure) with angular frequency \omega=2\pi/T

ω=2π/T where T

T is the time of one revolution of rotation. The angular frequency \omega

ω is so large that the static friction force is maximum.


Calculate the tension in the rope.


1
Expert's answer
2021-12-06T09:41:04-0500

mAa=mAv2/R=mAω2R=Ffr+Tm_Aa=m_Av^2/R=m_A\omega^2R=F_{fr}+T

where Ffr is friction force,

T is tension

Ffr=μsmAgF_{fr}=\mu_sm_Ag


T=mAω2RμsmAgT=m_A\omega^2R-\mu_sm_Ag


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS