Question #271669

The earth exerts a gravitational force of 1,9 x 1020 N on the moon. The mass of the moon is 7,4 x 1022 kg and its radius is 1,74 x 106 m.

Calculate the distance between the centres of the earth and the moon.

(MEarth = 6 x 1024 kg)


1
Expert's answer
2021-11-26T10:29:15-0500

mp=6×1024  kgmm=7.4×1022  kgFg=1.9×1020  NG=6.67×1011Fg=Gmpmmr21.9×1020=6.67×1011×6×1024×7.4×1022r21.9×1020=296.148×1035r2r2=296.148×10351.9×1020r2=155.86×1015r=3.94×108  mm_p = 6 \times 10^{24} \; kg \\ m_m = 7.4 \times 10^{22} \; kg \\ F_g = 1.9 \times 10^{20} \; N \\ G = 6.67 \times 10^{-11} \\ F_g = G \frac{m_pm_m}{r^2} \\ 1.9 \times 10^{20} = \frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 7.4 \times 10^{22}}{r^2 } \\ 1.9 \times 10^{20} = \frac{296.148 \times 10^{35}}{r^2} \\ r^2 = \frac{296.148 \times 10^{35}}{1.9 \times 10^{20}} \\ r^2 = 155.86 \times 10^{15} \\ r = 3.94 \times 10^8 \; m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS