Question #270849

Gaseous nitrogen actuates a Carnot power cycle in which the respective volumes at the four corners of the cycle, starting at the beginning of the isothermal expansion, are 𝑉1 = 10.10 𝐿, 𝑉2 = 14.53 𝐿, 𝑉3 = 226.54 𝐿, 𝑉4 = 157.73 𝐿. The cycle receives 21.1 KJ of heat. Determine the work.


1
Expert's answer
2021-11-25T11:51:27-0500

V1=10.1  LV2=14.53  LV3=226.54  LV4=157.73  LV_1 = 10.1 \;L \\ V_2 = 14.53 \;L \\ V_3 = 226.54 \;L \\ V_4 = 157.73 \;L

It is the case of reverce carnot cycle.

Heat resieved by cycle is

QL=21.1  kJQ_L = 21.1 \;kJ

For process 2-3:

Heat interaction is

QL=W21.1×103=nRT2ln(V3V2)21.1×103=1×831428×T2×ln(226.5414.53)T2=25.87  KQ_L = -W 21.1 \times 10^3 = nRT_2ln(\frac{V_3}{V_2}) \\ 21.1 \times 10^3 = 1 \times \frac{8314}{28} \times T_2 \times ln(\frac{226.54}{14.53}) \\ T_2 = 25.87 \;K

Now, for process 3-4 is an adiabatic process

THTL=(V3V4)Y1Y=1.4\frac{T_H}{T_L} = (\frac{V_3}{V_4})^{Y-1} \\ Y=1.4

for adiabatic

TH25.87=(226.54157.73)0.4TH=29.901  K\frac{T_H}{25.87} = (\frac{226.54}{157.73})^{0.4} \\ T_H = 29.901 \;K

Now, heat transfer in process 1-4

Q14=nRTln(V1V4)=1×831428×29.901×ln(10.1157.73)=24.401  kJQ_{14} = -nRTln(\frac{V_1}{V_4}) \\ = -1 \times \frac{8314}{28} \times 29.901 \times ln(\frac{10.1}{157.73}) \\ = 24.401 \; kJ

Net heat transfer =Q12+Q23+Q34+Q41= Q_{12} +Q_{23} +Q_{34} +Q_{41}

=021.1+0+24.401=3.301  kJ= 0-21.1+0+24.401 \\ = 3.301 \;kJ

In a cycle we know that

Qnet=WnetWnet=3.301  kJ\sum Q_{net} = \sum W_{net} \\ W_{net} = 3.301 \;kJ


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS