A 600-kg car is going around a curve with a radius of 120 m that is banked at an angle of 20° with a speed of 24.5 m/s. What is the minimum coefficient of static friction required for the car not to skid?
"F_n \\to" normal reaction Force
"F_F \\to" frictional Force
"Mg \\to" weight
"F_c \\to" centrifugal Force
"\\begin{cases}\n F_N -Mgcos20^o - F_Csin20^o = 0 \\to F_N = Mgcos20^o + F_Csin20^o \\\\ \n F_Ccos20^o - F_F-Mgsin20^o=0 \n\\end{cases}"
"F_Ccos20^o - F_F-Mgsin20^o=0"
"F_F=F_Ccos20^o -Mgsin20^o"
"\\mu F_N=" "F_Ccos20^o -Mgsin20^o"
"\\mu F_N=\\frac{MV^2}{R}cos20^o-Mgsin20^o"
"\\mu = \\frac{1}{F_N}\\lbrack\\frac{MV^2}{R}cos20^o-Mgsin20^o\\rbrack"
"\\mu = \\frac{1}{Mgcos20^o + F_Csin20^o}\\lbrack\\frac{MV^2}{R}cos20^o-Mgsin20^o\\rbrack"
"\\mu = 0.1235"
Comments
Leave a comment