Question #259173

Find the total work done in moving a particle in a force field given by F=3xyi-5zj+10xk along the curve x=t^2+1, y=2t^2, z=t^3 from t=1 to t=2.


1
Expert's answer
2021-11-01T17:15:04-0400

Given,

F=(3xyi5zj+10xk)x=t2+1y=2t2z=t3F=(3xyi-5zj+10xk)\\x=t^2+1\\y=2t^2\\z=t^3


We have,

Fˉdrˉ=(3xyi5zj+10xk)(dxi+dyj+dzk)\bar F\cdot \bar{dr}=(3xyi-5zj+10xk)\cdot(dxi+dyj+dzk)

=3xydx5zdy+10xdz=3(t2+1)(2t2)(2tdt)5(t3)(4tdt)+10(t2+1)(3t2dt)=(12t5+12t320t4+30t4+30t2)dt=(12t5+10t4+12t3+30t2)dt= 3xydx-5zdy+10xdz\\=3(t^2+1)\cdot(2t^2)(2tdt)-5(t^3)(4tdt)+10(t^2+1)(3t^2dt)\\=(12t^5+12t^3-20t^4+30t^4+30t^2)dt\\=(12t^5+10t^4+12t^3+30t^2)dt


So, Work Done = cFˉdrˉ\int_c \bar F\cdot \bar{dr} =12(12t5+10t4+12t3+30t2)dt=\int_1^2(12t^5+10t^4+12t^3+30t^2)dt\\

=[12t65+10t55+12t44+30t33]12=[2t6+2t5+3t4+10t3]12=[2(2)6+2(2)5+3(2)4+10(2)3][2+2+3+10]=303\\=[\frac{12t^6}{5}+\frac{10t^5}{5}+\frac{12t^4}{4}+\frac{30t^3}{3}]_1^2\\=[2t^6+2t^5+3t^4+10t^3]_1^2\\=[2(2)^6+2(2)^5+3(2)^4+10(2)^3]-[2+2+3+10]\\=303

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS