Given,
F=(3xyi−5zj+10xk)x=t2+1y=2t2z=t3
We have,
Fˉ⋅drˉ=(3xyi−5zj+10xk)⋅(dxi+dyj+dzk)
=3xydx−5zdy+10xdz=3(t2+1)⋅(2t2)(2tdt)−5(t3)(4tdt)+10(t2+1)(3t2dt)=(12t5+12t3−20t4+30t4+30t2)dt=(12t5+10t4+12t3+30t2)dt
So, Work Done = ∫cFˉ⋅drˉ =∫12(12t5+10t4+12t3+30t2)dt
=[512t6+510t5+412t4+330t3]12=[2t6+2t5+3t4+10t3]12=[2(2)6+2(2)5+3(2)4+10(2)3]−[2+2+3+10]=303
Comments