Question #253097

A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the

spring, and the system is then immersed in a medium that offers a damping force that is

numerically equal to 0.4 times the instantaneous velocity. (a) Find the equation of motion

if the mass is initially released from rest from a point 1 foot above the equilibrium position.

(b) Determine the position and velocity of the mass at t = pi/2 sec? (c) Find the first time at

which the mass passes through the equilibrium position heading upward.



1
Expert's answer
2021-10-18T17:41:37-0400

F1=2lbf;x1=1ftF_1= 2lbf; x_1=1ft

k=F1x1=2lbfftk = \frac{F_1}{x_1}=2\frac{lbf}{ft}

Fg=3.2lbf;g32fts2F_g= 3.2lbf;g\approx32\frac{ft}{s^2}

m=Fgg=0.1lbm = \frac{F_g}{g}=0.1lb

a)a)

F=maF= ma

a(t)=x(t)a(t) = x''(t)

v(t)=x(t)v(t) =x'(t)

x(0)=1ft;v(0)=x(0)=0x(0)= -1ft;v(0)=x'(0)= 0

Fspr=kxF_{spr}= kx

Fdmp=0.4v(t)=0.4x(t)F_{dmp}= 0.4*v(t)= 0.4x'(t)

F+Fspr+Fdmp=0F+F_{spr}+F_{dmp}=0

ma+kx+0.4x(t)=0ma +kx+0.4x'(t)=0

0.1x(t)+0.4x(t)+2x=00.1x''(t)+0.4x'(t) +2x = 0

x(t)+4x(t)+20=0x''(t)+4x'(t)+20=0

x=ertx = e^{rt}

r2+4r+20=0r^2+4r+20=0

r1=2+4i;r2=24ir_1= -2+4*i;r_2 = -2-4*i

x1(t)=e2tcos(4t)x_1(t)= e^{-2t}\cos(4t)

x2(t)=e2tsin(4t)x_2(t)= e^{-2t}\sin(4t)

x(t)=C1e2tcos(4t)+C2e2tsin(4t)x(t) = C_1 e^{-2t}\cos(4t)+C_2 e^{-2t}\sin(4t)

x(0)=1:C1=1x(0) = -1:C_1 =-1

x(t)=4C1e2tsin(4t)2C1e2tcos(4t)C2e2tsin(4t)4C2e2tcos(4t)x'(t) = -4C_1e^{-2t}\sin(4t)-2C_1e^{-2t}\cos(4t)\newline -C_2e^{-2t}\sin(4t)-4C_2e^{-2t}\cos(4t)

x(0)=0x'(0)=0

2C1+4C2=0-2C_1+4C_2= 0

C2=C12=0.5C_2= \frac{C_1}{2}=-0.5

x(t)=e2tcos(4t)0.5e2tsin(4t)x(t) = - e^{-2t}\cos(4t)-0.5 e^{-2t}\sin(4t)

b)b)

t=π2st = \frac{\pi}{2}s

x(t)=e2tcos(4t)0.5e2tsin(4t)x(t) = - e^{-2t}\cos(4t)-0.5 e^{-2t}\sin(4t)

x(π2)=eπ=0,043ftx(\frac{\pi}{2})=- e^{-\pi}=-0,043ft

x(t)=4e2tsin(4t)+2e2tcos(4t)+0.5e2tsin(4t)+2e2tcos(4t)x'(t) = 4e^{-2t}\sin(4t)+2e^{-2t}\cos(4t)\newline +0.5e^{-2t}\sin(4t)+2e^{-2t}\cos(4t)

v(π2)=4eπ=0.173ftsv(\frac{\pi}{2})=4*e^{-\pi}=0.173\frac{ft}{s}

c)c)

x(t)=0x(t)= 0

x(t)=e2tcos(4t)0.5e2tsin(4t)x(t) = - e^{-2t}\cos(4t)-0.5 e^{-2t}\sin(4t)

e2tcos(4t)0.5e2tsin(4t)=0- e^{-2t}\cos(4t)-0.5 e^{-2t}\sin(4t)= 0

cos(4t)+0.5sin(4t)=0cos(4t)+0.5sin(4t)= 0

tan(4t)=2\tan(4t) = -2

t=πn4arctan24;t>0t = \frac{\pi n}{4}-\frac{\arctan2}{4};t>0

the mass passes through the equilibrium\text{the mass passes through the equilibrium}

position in the upward direction\text{position in the upward direction}

by condition, 2 value is required t where t>0\text{by condition, 2 value is required } t\text{ where } t>0

t=2π4arctan241.3st = \frac{2\pi }{4}-\frac{\arctan2}{4}\approx1.3s




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS