F1=2lbf;x1=1ft
k=x1F1=2ftlbf
Fg=3.2lbf;g≈32s2ft
m=gFg=0.1lb
a)
F=ma
a(t)=x′′(t)
v(t)=x′(t)
x(0)=−1ft;v(0)=x′(0)=0
Fspr=kx
Fdmp=0.4∗v(t)=0.4x′(t)
F+Fspr+Fdmp=0
ma+kx+0.4x′(t)=0
0.1x′′(t)+0.4x′(t)+2x=0
x′′(t)+4x′(t)+20=0
x=ert
r2+4r+20=0
r1=−2+4∗i;r2=−2−4∗i
x1(t)=e−2tcos(4t)
x2(t)=e−2tsin(4t)
x(t)=C1e−2tcos(4t)+C2e−2tsin(4t)
x(0)=−1:C1=−1
x′(t)=−4C1e−2tsin(4t)−2C1e−2tcos(4t)−C2e−2tsin(4t)−4C2e−2tcos(4t)
x′(0)=0
−2C1+4C2=0
C2=2C1=−0.5
x(t)=−e−2tcos(4t)−0.5e−2tsin(4t)
b)
t=2πs
x(t)=−e−2tcos(4t)−0.5e−2tsin(4t)
x(2π)=−e−π=−0,043ft
x′(t)=4e−2tsin(4t)+2e−2tcos(4t)+0.5e−2tsin(4t)+2e−2tcos(4t)
v(2π)=4∗e−π=0.173sft
c)
x(t)=0
x(t)=−e−2tcos(4t)−0.5e−2tsin(4t)
−e−2tcos(4t)−0.5e−2tsin(4t)=0
cos(4t)+0.5sin(4t)=0
tan(4t)=−2
t=4πn−4arctan2;t>0
the mass passes through the equilibrium
position in the upward direction
by condition, 2 value is required t where t>0
t=42π−4arctan2≈1.3s
Comments