Answer to Question #250046 in Mechanics | Relativity for John

Question #250046

 Convert the following wavelengths to frequencies (Hz):

a. 0.71 μm

b. 31.20 μm

c. 419 nm

d. 1385 nm

e. 17.31 cm 


1
Expert's answer
2021-10-14T11:31:15-0400

λ=vf\lambda = \frac{v}{f}

f=vλf = \frac{v}{\lambda}

Since no propagation medium is specified, the \text{Since no propagation medium is specified, the }

default is an electromagnetic wave in a vacuum.\text{default is an electromagnetic wave in a vacuum.}

c3108mcc \approx 3*10^8\frac{m}{c}

f=cλf= \frac{c}{\lambda}


a.λ=0.71μm=0.71106ma. \lambda= 0.71 μm = 0.71*10^{-6}m

f=cλ=31080.71106=4.231014Hzf= \frac{c}{\lambda}=\frac{3*10^8}{0.71*10^{-6}}=4.23*10^{14}Hz


b.λ=31.20μm=31.2106mb. \lambda = 31.20 μm = 31.2*10^{-6}m

f=cλ=310831.2106=9.621012Hzf= \frac{c}{\lambda}=\frac{3*10^8}{31.2*10^{-6}}=9.62*10^{12}Hz


c.λ=419nm=419109mc. \lambda= 419 nm= 419*10^{-9}m

f=cλ=3108419109=7.161014Hzf= \frac{c}{\lambda}=\frac{3*10^8}{419*10^{-9}}=7.16*10^{14}Hz


d.λ=1385nm=1385109md. \lambda= 1385 nm= 1385*10^{-9}m

f=cλ=31081385109=2.171014Hzf= \frac{c}{\lambda}=\frac{3*10^8}{1385*10^{-9}}=2.17*10^{14}Hz


e.λ=17.31cm=17.31102me. \lambda=17.31 cm =17.31*10^{-2}m

f=cλ=310817.31102=1.73109Hzf= \frac{c}{\lambda}=\frac{3*10^8}{17.31*10^{-2}}=1.73*10^{9}Hz



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment