We use the definition for the acceleration to solve the equation and find the value for k:
"a=\\cfrac{dv}{dt}=\\cfrac{dv}{dx}\\cfrac{dx}{dt}=v\\cfrac{dv}{dx}=\\cfrac{k}{x}\n\\\\ \\cfrac{k}{x}=v\\cfrac{dv}{dx} \\implies k \\int{\\cfrac{dx}{x}}= \\int{v}{dv}"
We have to use the limits for the integration to calculate k:
"k \\int_{x_1=7.5\\,mm}^{x_2=750\\,mm}{\\frac{dx}{x}}= \\int_{v_1=0\\,m\/s}^{v_2=600\\,m\/s} {{v}{dv}}\n\\\\ \\implies k \\Big[{\\ln{x}}\\Big] _{x_1=7.5\\,mm}^{x_2=750\\,mm}= \\frac{1}{2}\\Big[v^2 \\Big]_{v_1=0\\,m\/s}^{v_2=600\\,m\/s} \n\\\\ \\text{}\n\\\\ \\therefore k= \\dfrac{ (600\\,m\/s)^2-(0\\,m\/s)^2}{2\\ln(\\frac{750\\,mm}{7.5\\,mm})}\n\\\\ \\text{ }\n\\\\ k=39086.50337\\, \\frac{m^2}{s^2}"
Now we substitute the value for k and x = 375 mm = 0.375 m to find the acceleration of the bullet at that point:
"a=\\cfrac{k}{x}=\\cfrac{39086.50337\\, \\frac{m^2}{s^2}}{0.375\\,m}\n\\\\ \\therefore a_{x=375\\,mm}=104230.676 \\cfrac{m}{s^2}"
Reference:
Comments
Leave a comment