"\\text{Let's denote the X-axis along the slope}"
"\\text{}""\\text{Take the positive direction up to the top }"
"\\text{of the inclined plane}"
"\\text{We choose the Y- axis perpendicular to the X-axis}"
"\\alpha=20\\degree"
"m= 6kg"
"g= 9.8\\frac{m}{s^2}"
"\\mu = 0.1"
"v_0= 4\\frac{m}{s}"
"h_0= 5m"
"(a)"
"\\text{Projection of forces on an Y-axis:}"
"N-mg\\cos \\alpha= 0"
"N=mg\\cos \\alpha= 6*9.8*\\cos20 \\degree=55.25N"
"\\text{Projection of forces on an X-axis:}"
"F_{fr}= \\mu N= 55.25*0.1=5.53N"
"F= - F{fr}-mg\\sin\\alpha= -5.53-6*9.8*\\sin20 \\degree=-25.65N"
"F = ma"
"a=\\frac{F}{m}=\\frac{-25.65}{6}=-4.28\\frac{m}{s^2}"
"v = v_0+at"
"v_1 =0\\text{ the particle has stopped moving}"
"t = -\\frac{v_0}{a}=\\frac{4}{4.28}=0.93s"
"S = v_0t+\\frac{at^2}{2}= 4*0.93-\\frac{4.28*0.93^2}{2}=1.87m(1)"
"\\text{Answer: }1.87m"
"(b)"
"\\text{Projection of forces on an Y-axis:}"
"N-mg\\cos \\alpha= 0"
"N=mg\\cos \\alpha= 6*9.8*\\cos20 \\degree=55.25N"
"\\text{Projection of forces on an X-axis:}"
"F_{fr}= \\mu N= 55.25*0.1=5.53N"
"F= -F{fr}+mg\\sin\\alpha=- 5.53+6*9.8*\\sin20 \\degree=14.58N"
"F = ma"
"a=\\frac{F}{m}=\\frac{14.58}{6}=2.43\\frac{m}{s^2}"
"v_0=0"
"S _1= \\frac{at^2}{2}"
"t = \\sqrt{\\frac{2S_1}{a}}"
"S _1= S(\\text{from (1))}+\\frac{h_0}{\\sin\\alpha}=1.87+14.2=16.07m"
"t = \\sqrt{\\frac{2S_1}{a}}= \\sqrt{\\frac{2*16.07}{2.43}}=3.64s"
"\\text{Answer: }3.64s"
Comments
Leave a comment