Question #234657
3. A particle of mass 6 kg is on a slope at an angel of 20o
to the horizontal. The coefficient of
friction between the particle and the slope is 0.1. The particle is 5 m from the bottom of the
slope. It is projected up the slope with a speed 4 m s-1
?
(a) Find the distance travelled up the slope from the starting point until the particle comes
to rest.
(b) Find the time until the particle reaches the bottom of the slope.
1
Expert's answer
2021-09-08T16:14:23-0400

Let’s denote the X-axis along the slope\text{Let's denote the X-axis along the slope}

\text{}Take the positive direction up to the top \text{Take the positive direction up to the top }

of the inclined plane\text{of the inclined plane}

We choose the Y- axis perpendicular to the X-axis\text{We choose the Y- axis perpendicular to the X-axis}

α=20°\alpha=20\degree

m=6kgm= 6kg

g=9.8ms2g= 9.8\frac{m}{s^2}

μ=0.1\mu = 0.1

v0=4msv_0= 4\frac{m}{s}

h0=5mh_0= 5m

(a)(a)

Projection of forces on an Y-axis:\text{Projection of forces on an Y-axis:}

Nmgcosα=0N-mg\cos \alpha= 0

N=mgcosα=69.8cos20°=55.25NN=mg\cos \alpha= 6*9.8*\cos20 \degree=55.25N

Projection of forces on an X-axis:\text{Projection of forces on an X-axis:}

Ffr=μN=55.250.1=5.53NF_{fr}= \mu N= 55.25*0.1=5.53N

F=Ffrmgsinα=5.5369.8sin20°=25.65NF= - F{fr}-mg\sin\alpha= -5.53-6*9.8*\sin20 \degree=-25.65N

F=maF = ma

a=Fm=25.656=4.28ms2a=\frac{F}{m}=\frac{-25.65}{6}=-4.28\frac{m}{s^2}

v=v0+atv = v_0+at

v1=0 the particle has stopped movingv_1 =0\text{ the particle has stopped moving}

t=v0a=44.28=0.93st = -\frac{v_0}{a}=\frac{4}{4.28}=0.93s

S=v0t+at22=40.934.280.9322=1.87m(1)S = v_0t+\frac{at^2}{2}= 4*0.93-\frac{4.28*0.93^2}{2}=1.87m(1)

Answer: 1.87m\text{Answer: }1.87m

(b)(b)

Projection of forces on an Y-axis:\text{Projection of forces on an Y-axis:}

Nmgcosα=0N-mg\cos \alpha= 0

N=mgcosα=69.8cos20°=55.25NN=mg\cos \alpha= 6*9.8*\cos20 \degree=55.25N

Projection of forces on an X-axis:\text{Projection of forces on an X-axis:}

Ffr=μN=55.250.1=5.53NF_{fr}= \mu N= 55.25*0.1=5.53N

F=Ffr+mgsinα=5.53+69.8sin20°=14.58NF= -F{fr}+mg\sin\alpha=- 5.53+6*9.8*\sin20 \degree=14.58N

F=maF = ma

a=Fm=14.586=2.43ms2a=\frac{F}{m}=\frac{14.58}{6}=2.43\frac{m}{s^2}

v0=0v_0=0

S1=at22S _1= \frac{at^2}{2}

t=2S1at = \sqrt{\frac{2S_1}{a}}

S1=S(from (1))+h0sinα=1.87+14.2=16.07mS _1= S(\text{from (1))}+\frac{h_0}{\sin\alpha}=1.87+14.2=16.07m

t=2S1a=216.072.43=3.64st = \sqrt{\frac{2S_1}{a}}= \sqrt{\frac{2*16.07}{2.43}}=3.64s

Answer: 3.64s\text{Answer: }3.64s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS