Let’s denote the X-axis along the slope \text{Let's denote the X-axis along the slope} Let’s denote the X-axis along the slope
\text{} Take the positive direction up to the top \text{Take the positive direction up to the top } Take the positive direction up to the top
of the inclined plane \text{of the inclined plane} of the inclined plane
We choose the Y- axis perpendicular to the X-axis \text{We choose the Y- axis perpendicular to the X-axis} We choose the Y- axis perpendicular to the X-axis
α = 20 ° \alpha=20\degree α = 20°
m = 6 k g m= 6kg m = 6 k g
g = 9.8 m s 2 g= 9.8\frac{m}{s^2} g = 9.8 s 2 m
μ = 0.1 \mu = 0.1 μ = 0.1
v 0 = 4 m s v_0= 4\frac{m}{s} v 0 = 4 s m
h 0 = 5 m h_0= 5m h 0 = 5 m
( a ) (a) ( a )
Projection of forces on an Y-axis: \text{Projection of forces on an Y-axis:} Projection of forces on an Y-axis:
N − m g cos α = 0 N-mg\cos \alpha= 0 N − m g cos α = 0
N = m g cos α = 6 ∗ 9.8 ∗ cos 20 ° = 55.25 N N=mg\cos \alpha= 6*9.8*\cos20 \degree=55.25N N = m g cos α = 6 ∗ 9.8 ∗ cos 20° = 55.25 N
Projection of forces on an X-axis: \text{Projection of forces on an X-axis:} Projection of forces on an X-axis:
F f r = μ N = 55.25 ∗ 0.1 = 5.53 N F_{fr}= \mu N= 55.25*0.1=5.53N F f r = μ N = 55.25 ∗ 0.1 = 5.53 N
F = − F f r − m g sin α = − 5.53 − 6 ∗ 9.8 ∗ sin 20 ° = − 25.65 N F= - F{fr}-mg\sin\alpha= -5.53-6*9.8*\sin20 \degree=-25.65N F = − F f r − m g sin α = − 5.53 − 6 ∗ 9.8 ∗ sin 20° = − 25.65 N
F = m a F = ma F = ma
a = F m = − 25.65 6 = − 4.28 m s 2 a=\frac{F}{m}=\frac{-25.65}{6}=-4.28\frac{m}{s^2} a = m F = 6 − 25.65 = − 4.28 s 2 m
v = v 0 + a t v = v_0+at v = v 0 + a t
v 1 = 0 the particle has stopped moving v_1 =0\text{ the particle has stopped moving} v 1 = 0 the particle has stopped moving
t = − v 0 a = 4 4.28 = 0.93 s t = -\frac{v_0}{a}=\frac{4}{4.28}=0.93s t = − a v 0 = 4.28 4 = 0.93 s
S = v 0 t + a t 2 2 = 4 ∗ 0.93 − 4.28 ∗ 0.9 3 2 2 = 1.87 m ( 1 ) S = v_0t+\frac{at^2}{2}= 4*0.93-\frac{4.28*0.93^2}{2}=1.87m(1) S = v 0 t + 2 a t 2 = 4 ∗ 0.93 − 2 4.28 ∗ 0.9 3 2 = 1.87 m ( 1 )
Answer: 1.87 m \text{Answer: }1.87m Answer: 1.87 m
( b ) (b) ( b )
Projection of forces on an Y-axis: \text{Projection of forces on an Y-axis:} Projection of forces on an Y-axis:
N − m g cos α = 0 N-mg\cos \alpha= 0 N − m g cos α = 0
N = m g cos α = 6 ∗ 9.8 ∗ cos 20 ° = 55.25 N N=mg\cos \alpha= 6*9.8*\cos20 \degree=55.25N N = m g cos α = 6 ∗ 9.8 ∗ cos 20° = 55.25 N
Projection of forces on an X-axis: \text{Projection of forces on an X-axis:} Projection of forces on an X-axis:
F f r = μ N = 55.25 ∗ 0.1 = 5.53 N F_{fr}= \mu N= 55.25*0.1=5.53N F f r = μ N = 55.25 ∗ 0.1 = 5.53 N
F = − F f r + m g sin α = − 5.53 + 6 ∗ 9.8 ∗ sin 20 ° = 14.58 N F= -F{fr}+mg\sin\alpha=- 5.53+6*9.8*\sin20 \degree=14.58N F = − F f r + m g sin α = − 5.53 + 6 ∗ 9.8 ∗ sin 20° = 14.58 N
F = m a F = ma F = ma
a = F m = 14.58 6 = 2.43 m s 2 a=\frac{F}{m}=\frac{14.58}{6}=2.43\frac{m}{s^2} a = m F = 6 14.58 = 2.43 s 2 m
v 0 = 0 v_0=0 v 0 = 0
S 1 = a t 2 2 S _1= \frac{at^2}{2} S 1 = 2 a t 2
t = 2 S 1 a t = \sqrt{\frac{2S_1}{a}} t = a 2 S 1
S 1 = S ( from (1)) + h 0 sin α = 1.87 + 14.2 = 16.07 m S _1= S(\text{from (1))}+\frac{h_0}{\sin\alpha}=1.87+14.2=16.07m S 1 = S ( from (1)) + s i n α h 0 = 1.87 + 14.2 = 16.07 m
t = 2 S 1 a = 2 ∗ 16.07 2.43 = 3.64 s t = \sqrt{\frac{2S_1}{a}}= \sqrt{\frac{2*16.07}{2.43}}=3.64s t = a 2 S 1 = 2.43 2 ∗ 16.07 = 3.64 s
Answer: 3.64 s \text{Answer: }3.64s Answer: 3.64 s
Comments