g ≈ 10 m s 2 g\approx 10\frac{m}{s^2} g ≈ 10 s 2 m
m = 0.6 k g m= 0.6kg m = 0.6 k g
h 1 = 1.8 m h_1= 1.8m h 1 = 1.8 m
v n − ball speed when reaching ground level v_n-\text{ball speed when reaching ground level} v n − ball speed when reaching ground level
v n ′ -ball velocity after hitting the ground v_n'\text{-ball velocity after hitting the ground} v n ′ -ball velocity after hitting the ground
a ) a) a )
According to the law of conservation of energy: \text{According to the law of conservation of energy:} According to the law of conservation of energy:
m g h 1 = m v 1 2 2 mgh_1= \frac{mv_1^2}{2} m g h 1 = 2 m v 1 2
v 1 = 2 g h 1 = 2 ∗ 10 ∗ 1.8 = 6 m s v_1=\sqrt{2gh_1}= \sqrt{2*10*1.8}= 6\frac{m}{s} v 1 = 2 g h 1 = 2 ∗ 10 ∗ 1.8 = 6 s m
v 1 ′ = v 1 − v 1 ∗ 10 % = 0.9 v 1 = 0.9 ∗ 6 = 5.4 m s v_1' = v_1-v_1*10 \%=0.9v_1=0.9*6=5.4\frac{m}{s} v 1 ′ = v 1 − v 1 ∗ 10% = 0.9 v 1 = 0.9 ∗ 6 = 5.4 s m
p 1 = m v 1 p_1 = mv_1 p 1 = m v 1
p 1 ′ = m v 1 ′ p'_1=mv'_1 p 1 ′ = m v 1 ′
Δ p = p 1 ′ − p = m ( v 1 ′ − v ) = 0.6 ∗ ( 6 − 5.4 ) = − 0.36 k g m s \Delta p = p'_1-p=m(v'_1-v)=0.6*(6-5.4)= -0.36kg\frac{m}{s} Δ p = p 1 ′ − p = m ( v 1 ′ − v ) = 0.6 ∗ ( 6 − 5.4 ) = − 0.36 k g s m
Answer: − 0.36 k g ∗ m s \text{Answer: }-0.36kg*\frac{m}{s} Answer: − 0.36 k g ∗ s m
b ) b) b )
v 1 ′ = 0.9 v 1 v_1'=0.9v_1 v 1 ′ = 0.9 v 1
v 2 = v 1 ′ v_2 = v'_1 v 2 = v 1 ′
v 2 ′ = 0.9 v 2 = 0. 9 2 v 1 v_2'=0.9v_2=0.9^2v_1 v 2 ′ = 0.9 v 2 = 0. 9 2 v 1
v 3 = v 2 ′ v_3 = v'_2 v 3 = v 2 ′
v 3 ′ = 0.9 v 3 = 0. 9 3 v 1 = 0. 9 3 ∗ 6 = 4.374 m s v_3'=0.9v_3=0.9^3v_1=0.9^3*6=4.374\frac{m}{s} v 3 ′ = 0.9 v 3 = 0. 9 3 v 1 = 0. 9 3 ∗ 6 = 4.374 s m
m g h 3 = m v 3 ′ 2 2 mgh_3 = \frac{mv'^2_3}{2} m g h 3 = 2 m v 3 ′2
h 3 = v 3 ′ 2 2 g = 4.37 4 2 2 ∗ 10 ≈ 0.96 m h_3 = \frac{v'^2_3}{2g}=\frac{4.374^2}{2*10}\approx0.96m h 3 = 2 g v 3 ′2 = 2 ∗ 10 4.37 4 2 ≈ 0.96 m
Answer: h 3 = 0.96 m < 1 m \text{Answer: }h_3 = 0.96m<1m Answer: h 3 = 0.96 m < 1 m
Comments