Question #234655
1. A ball of mass 0.6 kg is dropped from a height of 1.8m onto a solid floor. Each time the ball
bounces on the floor it loses 10% of its speed.
a) Work out how much momentum was absorbed by the floor in the first bounce?
b) Show that the ball first fails to reach a height of 1 m after the third bounce.
1
Expert's answer
2021-09-08T16:14:30-0400

g10ms2g\approx 10\frac{m}{s^2}

m=0.6kgm= 0.6kg

h1=1.8mh_1= 1.8m

vnball speed when reaching ground levelv_n-\text{ball speed when reaching ground level}

vn-ball velocity after hitting the groundv_n'\text{-ball velocity after hitting the ground}

a)a)

According to the law of conservation of energy:\text{According to the law of conservation of energy:}

mgh1=mv122mgh_1= \frac{mv_1^2}{2}

v1=2gh1=2101.8=6msv_1=\sqrt{2gh_1}= \sqrt{2*10*1.8}= 6\frac{m}{s}

v1=v1v110%=0.9v1=0.96=5.4msv_1' = v_1-v_1*10 \%=0.9v_1=0.9*6=5.4\frac{m}{s}

p1=mv1p_1 = mv_1

p1=mv1p'_1=mv'_1

Δp=p1p=m(v1v)=0.6(65.4)=0.36kgms\Delta p = p'_1-p=m(v'_1-v)=0.6*(6-5.4)= -0.36kg\frac{m}{s}

Answer: 0.36kgms\text{Answer: }-0.36kg*\frac{m}{s}

b)b)

v1=0.9v1v_1'=0.9v_1

v2=v1v_2 = v'_1

v2=0.9v2=0.92v1v_2'=0.9v_2=0.9^2v_1

v3=v2v_3 = v'_2

v3=0.9v3=0.93v1=0.936=4.374msv_3'=0.9v_3=0.9^3v_1=0.9^3*6=4.374\frac{m}{s}

mgh3=mv322mgh_3 = \frac{mv'^2_3}{2}

h3=v322g=4.37422100.96mh_3 = \frac{v'^2_3}{2g}=\frac{4.374^2}{2*10}\approx0.96m

Answer: h3=0.96m<1m\text{Answer: }h_3 = 0.96m<1m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS