Answer to Question #226889 in Mechanics | Relativity for Kamfx

Question #226889

Solve without using determinant form A.B×C= (Axi+Ayj+Azk). (Bxi+Byj+Bzk)× (Cxi+Cyj+Czk)


1
Expert's answer
2021-08-17T17:31:36-0400

B×C=[i^j^k^BxByBzCxCyCz]B\times C=\begin{bmatrix} \hat{i}&\hat{j}&\hat{k} \\B_x&B_y&B_z \\ C_x&C_y&C_z \end{bmatrix}


B×C=i^(ByCzBzCy)j^(BxCzBzCx)+k^(BxCyByCx)B\times C=\hat{i}(B_yC_z-B_zC_y)-\hat{j}(B_xC_z-B_zC_x)+\hat{k}(B_xC_y-B_yC_x)

A.(B×C)=(Axi^+j^Ay+k^Az).(i^(ByCzBzCy)j^(BxCzBzCx)+k^(BxCyByCx))A.(B\times C)=(A_x\hat{i}+\hat{j}A_y+\hat{k}A_z).(\hat{i}(B_yC_z-B_zC_y)-\hat{j}(B_xC_z-B_zC_x)+\hat{k}(B_xC_y-B_yC_x))

A.(B×C)=Ax(ByCzBzCy)Ay(BxCzBzCx)+Az(BxCyByCx)A.(B\times C)=A_x(B_yC_z-B_zC_y)-A_y(B_xC_z-B_zC_x)+A_z(B_xC_y-B_yC_x)





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment