1. Eight kilometers below the surface of the ocean the pressure is 82Mpa. Determine the density of the seawater at this depth if the density at the surface is 1025kg/m3 and the average bulk modulus of elasticity is 2.3GPa.
Gives
h=8km
Bulk modulus
"\\beta=\\frac{\u2206pV}{\u2206V}"
"\\frac{\u2206p}{\\beta}=\\frac{\u2206V}{V}"
We know that
"\\frac{\u2206V}{V}=\\frac{\\frac{m}{\\rho}-\\frac{m}{\\rho'}}{\\frac {m}{\\rho}}"
"\\frac{\u2206V}{V}={1}-{\\frac{\\rho}{\\rho'}}"
"\\frac{\u2206p}{\\beta}=1-\\frac{\\rho}{\\rho'}"
"\\rho'=\\frac{\\rho}{1-\\frac{\u2206p}{\\beta}}"
Put value
"\\rho'=\\frac{1025}{1-\\frac{80.36\\times10^6-82\\times10^6}{2.3\\times10^9}}"
"\\rho'=\\frac{1025}{1-\\frac{1.64\\times10^6}{2.3\\times10^9}}"
"\\rho'=\\frac{1025}{1-7.13\\times10^{-4}}"
"\\rho'=1025.73kg\/m^3"
Comments
Leave a comment