Question #226481

1.    Eight kilometers below the surface of the ocean the pressure is 82Mpa. Determine the density of the seawater at this depth if the density at the surface is 1025kg/m3 and the average bulk modulus of elasticity is 2.3GPa.



1
Expert's answer
2021-08-16T17:31:21-0400

Gives

h=8km

Bulk modulus

β=pVV\beta=\frac{∆pV}{∆V}

pβ=VV\frac{∆p}{\beta}=\frac{∆V}{V}

We know that

VV=mρmρmρ\frac{∆V}{V}=\frac{\frac{m}{\rho}-\frac{m}{\rho'}}{\frac {m}{\rho}}

VV=1ρρ\frac{∆V}{V}={1}-{\frac{\rho}{\rho'}}

pβ=1ρρ\frac{∆p}{\beta}=1-\frac{\rho}{\rho'}

ρ=ρ1pβ\rho'=\frac{\rho}{1-\frac{∆p}{\beta}}

Put value

ρ=1025180.36×10682×1062.3×109\rho'=\frac{1025}{1-\frac{80.36\times10^6-82\times10^6}{2.3\times10^9}}

ρ=102511.64×1062.3×109\rho'=\frac{1025}{1-\frac{1.64\times10^6}{2.3\times10^9}}

ρ=102517.13×104\rho'=\frac{1025}{1-7.13\times10^{-4}}

ρ=1025.73kg/m3\rho'=1025.73kg/m^3



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS