a sphere whose radius at time t is b+acosnt is surrounded by liquid extending to infinity under no force . prove that the pressure at distance r from the centre is less than the pressure at an infinite distance by pn^2/r(b+acosnt)[a(1-3sin^2 nt)+bcos nt+a/2r^3 (sin^2 nt)(b+acos nt)^3]
Given,
The radius of the sphere at the time t is "(r)=b+a\\cos(nt)"
"dr=-an\\sin(nt)"
Let the uniform density of the sphere be "\\rho"
"dV = A.dr"
So, mass of the partial sphere "(dm)=\\rho A.dr"
Weight of the sphere "(W)=\\rho g A. dr"
"g=\\frac{GM}{r^2}=\\frac{4\\pi Gr^3}{3r^2}=\\frac{4}{3}\\pi Gr"
Let the pressure at the radius r is "P"
So, pressure at "r+dr" be "P+dP"
Now, equating the downward force and upward force
"A(P+dP)+\\frac{4\\pi A G\\rho^2 rdr}{3}-\\frac{4\\pi r^3}{3}\\rho\\times\\frac{4}{3}\\pi Gr=AP"
"\\Rightarrow (dP)+\\frac{4\\pi G\\rho^2 rdr}{3}-\\frac{4\\pi r^3}{3A}\\rho\\times\\frac{4}{3}\\pi Gr=0"
"\\Rightarrow" "dP=\\frac{4\\pi r^3}{3A}\\rho\\times\\frac{4}{3}\\pi Gr-\\frac{4\\pi G\\rho^2 rdr)}{3}"
"\\Rightarrow dP=\\frac{4\\pi (b+a\\cos(nt))^4}{3A}\\rho\\times\\frac{4}{3}\\pi G-\\frac{4\\pi G\\rho^2 (b+a\\cos(nt))(-an\\sin(nt)}{3}"
Comments
Leave a comment