Answer to Question #210155 in Mechanics | Relativity for Ayesha

Question #210155

a sphere whose radius at time t is b+acosnt is surrounded by liquid extending to infinity under no force . prove that the pressure at distance r from the centre is less than the pressure at an infinite distance by pn^2/r(b+acosnt)[a(1-3sin^2 nt)+bcos nt+a/2r^3 (sin^2 nt)(b+acos nt)^3]


1
Expert's answer
2021-06-24T11:59:40-0400

Given,

The radius of the sphere at the time t is (r)=b+acos(nt)(r)=b+a\cos(nt)

dr=ansin(nt)dr=-an\sin(nt)

Let the uniform density of the sphere be ρ\rho

dV=A.drdV = A.dr

So, mass of the partial sphere (dm)=ρA.dr(dm)=\rho A.dr

Weight of the sphere (W)=ρgA.dr(W)=\rho g A. dr

g=GMr2=4πGr33r2=43πGrg=\frac{GM}{r^2}=\frac{4\pi Gr^3}{3r^2}=\frac{4}{3}\pi Gr

Let the pressure at the radius r is PP

So, pressure at r+drr+dr be P+dPP+dP

Now, equating the downward force and upward force

A(P+dP)+4πAGρ2rdr34πr33ρ×43πGr=APA(P+dP)+\frac{4\pi A G\rho^2 rdr}{3}-\frac{4\pi r^3}{3}\rho\times\frac{4}{3}\pi Gr=AP


(dP)+4πGρ2rdr34πr33Aρ×43πGr=0\Rightarrow (dP)+\frac{4\pi G\rho^2 rdr}{3}-\frac{4\pi r^3}{3A}\rho\times\frac{4}{3}\pi Gr=0


\Rightarrow dP=4πr33Aρ×43πGr4πGρ2rdr)3dP=\frac{4\pi r^3}{3A}\rho\times\frac{4}{3}\pi Gr-\frac{4\pi G\rho^2 rdr)}{3}


dP=4π(b+acos(nt))43Aρ×43πG4πGρ2(b+acos(nt))(ansin(nt)3\Rightarrow dP=\frac{4\pi (b+a\cos(nt))^4}{3A}\rho\times\frac{4}{3}\pi G-\frac{4\pi G\rho^2 (b+a\cos(nt))(-an\sin(nt)}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment