Given,
The radius of the sphere at the time t is (r)=b+acos(nt)
dr=−ansin(nt)
Let the uniform density of the sphere be ρ
dV=A.dr
So, mass of the partial sphere (dm)=ρA.dr
Weight of the sphere (W)=ρgA.dr
g=r2GM=3r24πGr3=34πGr
Let the pressure at the radius r is P
So, pressure at r+dr be P+dP
Now, equating the downward force and upward force
A(P+dP)+34πAGρ2rdr−34πr3ρ×34πGr=AP
⇒(dP)+34πGρ2rdr−3A4πr3ρ×34πGr=0
⇒ dP=3A4πr3ρ×34πGr−34πGρ2rdr)
⇒dP=3A4π(b+acos(nt))4ρ×34πG−34πGρ2(b+acos(nt))(−ansin(nt)
Comments
Leave a comment