A ceiling fan blade is rotating at 1275 rpm (revolutions per minute) . What is its angular velocity in rad/s
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n &=\\small \\frac{1275\\,rotations}{60s}\\\\\n&=\\small 21.25\\,rps\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n &=\\small 21.25\\,rotation\\times2\\pi\\,rad\/rotation\\\\\n&=\\small 133.52\\,rad\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\omega&=\\small \\bold{133.52\\,rads^{-1}}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\omega &=\\small 2\\pi\\frac{n}{60} \n\\end{aligned}" where n is the frequency given in rpm
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\omega&=\\small 2\\pi\\times\\frac{1275}{60}\\\\\n&=\\small 133.52\\,rads^{-1}\n\\end{aligned}"
Comments
Leave a comment