Answer to Question #194106 in Mechanics | Relativity for Clinton Paul

Question #194106

.There is a node, starting at (0, 0, 0), and it's moving 10 per second on the X axis, 6 per second on the Y axis, and 8 per second on the Z axis. Please answer the follow questions.

(1) What is the motion equation of this node?

(2) what is the position of this node after 5 seconds?


1
Expert's answer
2021-05-16T18:00:50-0400

(1) Initial velocity

v0=0i^+0j^+0k^v_0 = 0 \hat{i} + 0 \hat{j}+ 0 \hat{k}

Final velocity

vt=10i^+6j^+8k^v_t = 10 \hat{i} + 6 \hat{j} + 8 \hat{k}

Take acceleration

at=axi^+ayj^+azk^a_t = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}

According to the equation of motion

vt=v0t+at10i^+6j^+8k^=(0i^+0j^+0k^)+(axi^+ayj^+azk^)t(axi^+ayj^+azk^)=10ti^+6tj^+8tk^v_t = v_0t + at \\ 10 \hat{i} + 6 \hat{j} + 8 \hat{k} = (0 \hat{i} + 0 \hat{j} + 0 \hat{k}) + (a_x \hat{i} + a_y \hat{j} + a_z \hat{k})t \\ (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) = \frac{10}{t} \hat{i} + \frac{6}{t} \hat{j} + \frac{8}{ t} \hat{k}

(2) The position of this node after 5 seconds

t = 5

According to the equation of motion

S = v_0t + \frac{1}{2}at^2

After 5 sec

axi^+ayj^+azk^=105i^+65j^+85k^=2i^+65j^+85k^S=(0i^+0j^+0k^)×5+12×(2i^+65j^+85k^)×52=2×252i^+6×255×2j^+8×255×2k^=25i^+15j^+20k^a_x \hat{i} + a_y \hat{j} + a_z \hat{k} = \frac{10}{5} \hat{i} + \frac{6}{5} \hat{j} + \frac{8}{ 5} \hat{k} \\ = 2 \hat{i} + \frac{6}{5} \hat{j} + \frac{8}{ 5} \hat{k} \\ S = (0 \hat{i} + 0 \hat{j} + 0 \hat{k}) \times 5 + \frac{1}{2} \times (2 \hat{i} + \frac{6}{5} \hat{j} + \frac{8}{ 5} \hat{k}) \times 5^2 \\ = \frac{2 \times 25}{2} \hat{i} + \frac{6 \times 25}{5 \times 2} \hat{j} + \frac{8 \times 25}{5 \times 2} \hat{k} \\ = 25 \hat{i} + 15 \hat{j} + 20 \hat{k}

Therefore, after 5 sec the position of the node is (25, 15, 20)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment