Question #188144

A gas molecule having a speed of 300 m/sec collides elastically with another molecule of same mass which is initially at rest. After the collision the first molecule moves at an angle of 30 degree to its initial direction. Find the speed of each molecule after collision and the angle made with the incident direction by the recoiling target molecule.




1
Expert's answer
2021-05-04T06:39:49-0400

conservation of momentum in horizontal direction-


mv1+mv2=mv1cos30+mv2cosθmv_1+mv_2=mv_1'cos30+mv_2'cos\theta


300=v1cos30+v2cosθ      (1)300=v_1'cos30+v_2'cos\theta~~~~~~-(1)


Momentum in Y-direction


mv1sin30=mv2sinθv12=v2sinθ       (2)mv_1'sin30=mv_2sin\theta \\ \dfrac{v_1'}{2}=v_2'sin\theta~~~~~~~-(2)


From conservation of ene2gy-


12mu12=12mv12+11mv22v12=v12+v22(300)2=v12+v22     (3)\dfrac{1}{2}mu_1^2=\dfrac{1}{2}mv_1'^2+\dfrac{1}{1}mv_2'^2 \\ v_1^2=v_1'^2+v_2'^2 \\ (300)^2=v_1'^2+v_2'^2~~~~~-(3)


Equation 1 can be written as-


v2cosθ=300v1cos30v22cos2θ=(300v1cos30)2v22cos2θ=90000+v1rcos2θ600v1cosθ30     (4)v_2'cos\theta=300-v_1'cos30 \\ v_2'^2cos^2\theta=(300-v_1'cos30)^2\\ v_2'^2cos^2\theta=90000+v_1^rcos^2\theta-600v_1'cos\theta30~~~~~-(4)


Equation 2 can be writtten as-

v2sinθ=v122v22sin2θ=v124      (5)v_2'sin\theta=\dfrac{v_1'^2}{2} \\v_2'^2sin^2\theta=\dfrac{v_1^2}{4}~~~~~~-(5)

Adding equation 4 and 5-


v22=90000+v12cos2300600v1cos30+v1r4       (6)v_2'^2=90000+v_1'^2cos^2300-600v_1'cos30+\dfrac{v_1'^r}{4}~~~~~~~-(6)


from equation 3 and 6-


90000=v1r+90000+v12cos2θ600v1cosθ+v12490000=v_1'^r+90000+v_1'^2cos^2\theta-600v_1'cos\theta+\dfrac{v_1^2}{4}

2v1=600cos30v1=259.81m/s2v_1=600cos30\Rightarrow v_1'=259.81m/s


From eqn(3)-

(300)2=(259.81)2+v22v2=150m/s(300)^2=(259.81)^2+v_2'^2\\ \Rightarrow v_2'=150m/s


from equation 2-


sinθ=259.812×150sin\theta=\dfrac{259.81}{2\times 150}


θ=60\theta=60^{\circ}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS