The length (π) and Time Period (π) of a simple pendulum are related as: π = 2πβ
π
π
, whereΒ
π is acceleration due to gravity. In an experiment the following values for π and π are found:
π (in cm) π (in seconds) π (in cm) π (in seconds) π (in cm) π (in seconds)
50 1.41 70 1.67 90 1.90
55 1.48 75 1.73 95 1.95
60 1.55 80 1.79 100 2.00
65 1.61 85 1.84
You can verify, if you like, taking π β 981 ππ π
β2
. The values of π are approximated to theΒ
second place after decimal. Draw the π β π graph (do it manually, donβt use a computer
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small m&=\\small \\tan \\theta =\\frac{(400-219)\\times10^{-2 }}{1-0.55}\\\\\n&=\\small 402.22\\times 10^{-2}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small T&=\\small 2\\pi \\sqrt{\\frac{L+\\epsilon}{g}}\\\\\n\\small T^2 &=\\small 4\\pi^2 \\frac{(L+\\epsilon)}{g}\\\\\n\\small T^2 &=\\small \\frac{4\\pi^2}{g}\\cdot L+\\frac{4\\pi^2 }{g}\\cdot\\epsilon\\\\\n&\\downarrow\\\\\n\\small y&=\\small mx+c\\\\\n\\\\\n \\small m&=\\small 4.0222=\\frac{4\\pi^2}{g}\\\\\n\\small g&=\\small \\frac{4\\pi^2}{4.0222}=9.815\\\\\n&\\approx\\small \\bold{9.82ms^{-2}}\n\\end{aligned}" "\\small L+\\epsilon :" is the actual distance to the center of the pendulum
Comments
Leave a comment