In this problem, we will consider the general energy equation
P 1 γ + Z 1 + v 1 2 2 g = P 2 γ + Z 2 + v 2 2 2 g \frac{P_1}{\gamma}+ Z_1+\frac{v_1^2}{2g}=\frac{P_2}{\gamma}+ Z_2+\frac{v_2^2}{2g} γ P 1 + Z 1 + 2 g v 1 2 = γ P 2 + Z 2 + 2 g v 2 2
900 600 + 6 + 77. 1 2 2 × 9.81 = 400 600 + 12 + v 2 2 2 × 9.81 \frac{900}{600}+ 6+\frac{77.1^2}{2 \times 9.81}=\frac{400}{600}+ 12+\frac{v_2^2}{2 \times 9.81} 600 900 + 6 + 2 × 9.81 77. 1 2 = 600 400 + 12 + 2 × 9.81 v 2 2
400 600 + 12 + v 2 2 ⋅ 9.81 = 900 600 + 6 + 77. 1 2 2 ⋅ 9.81 \frac{400}{600}+12+\frac{v^2}{2\cdot \:9.81}=\frac{900}{600}+6+\frac{77.1^2}{2\cdot \:9.81} 600 400 + 12 + 2 ⋅ 9.81 v 2 = 600 900 + 6 + 2 ⋅ 9.81 77. 1 2
400 600 + 12 + v 2 2 ⋅ 9.81 − ( 400 600 + 12 ) = 900 600 + 6 + 77. 1 2 2 ⋅ 9.81 − ( 400 600 + 12 ) \frac{400}{600}+12+\frac{v^2}{2\cdot \:9.81}-\left(\frac{400}{600}+12\right)=\frac{900}{600}+6+\frac{77.1^2}{2\cdot \:9.81}-\left(\frac{400}{600}+12\right) 600 400 + 12 + 2 ⋅ 9.81 v 2 − ( 600 400 + 12 ) = 600 900 + 6 + 2 ⋅ 9.81 77. 1 2 − ( 600 400 + 12 )
v 2 2 ⋅ 9.81 = 3 2 + 5944.41 19.62 − ( 2 3 + 12 ) + 6 \frac{v^2}{2\cdot \:9.81}=\frac{3}{2}+\frac{5944.41}{19.62}-\left(\frac{2}{3}+12\right)+6 2 ⋅ 9.81 v 2 = 2 3 + 19.62 5944.41 − ( 3 2 + 12 ) + 6
19.62 v 2 2 ⋅ 9.81 = 35058.24 ⋅ 19.62 117.72 \frac{19.62v^2}{2\cdot \:9.81}=\frac{35058.24\cdot \:19.62}{117.72} 2 ⋅ 9.81 19.62 v 2 = 117.72 35058.24 ⋅ 19.62
v 2 = 687842.6688 117.72 v^2=\frac{687842.6688}{117.72} v 2 = 117.72 687842.6688
v = 687842.6688 117.72 , v = − 687842.6688 117.72 v=\sqrt{\frac{687842.6688}{117.72}},\:v=-\sqrt{\frac{687842.6688}{117.72}} v = 117.72 687842.6688 , v = − 117.72 687842.6688
v = 76.43978 , v = − 76.43978 v=76.43978 , v=-76.43978 v = 76.43978 , v = − 76.43978
Hence , v 2 = 76.4 m / s v_2=76.4 m/s v 2 = 76.4 m / s
Comments