The section of a tube has height of 6m and it has a fluid with a density of 600 kg/m3, a
velocity of 77.1 m/s and a pressure of 900 Pa. Find the velocity at another section where
the height is 12 m, and the pressure is 400 Pa
In this problem, we will consider the general energy equation
"\\frac{P_1}{\\gamma}+ Z_1+\\frac{v_1^2}{2g}=\\frac{P_2}{\\gamma}+ Z_2+\\frac{v_2^2}{2g}"
"\\frac{900}{600}+ 6+\\frac{77.1^2}{2 \\times 9.81}=\\frac{400}{600}+ 12+\\frac{v_2^2}{2 \\times 9.81}"
"\\frac{400}{600}+12+\\frac{v^2}{2\\cdot \\:9.81}=\\frac{900}{600}+6+\\frac{77.1^2}{2\\cdot \\:9.81}"
"\\frac{400}{600}+12+\\frac{v^2}{2\\cdot \\:9.81}-\\left(\\frac{400}{600}+12\\right)=\\frac{900}{600}+6+\\frac{77.1^2}{2\\cdot \\:9.81}-\\left(\\frac{400}{600}+12\\right)"
"\\frac{v^2}{2\\cdot \\:9.81}=\\frac{3}{2}+\\frac{5944.41}{19.62}-\\left(\\frac{2}{3}+12\\right)+6"
"\\frac{19.62v^2}{2\\cdot \\:9.81}=\\frac{35058.24\\cdot \\:19.62}{117.72}"
"v^2=\\frac{687842.6688}{117.72}"
"v=\\sqrt{\\frac{687842.6688}{117.72}},\\:v=-\\sqrt{\\frac{687842.6688}{117.72}}"
"v=76.43978 , v=-76.43978"
Hence , "v_2=76.4 m\/s"
Comments
Leave a comment