Question #174544

The section of a tube has height of 6m and it has a fluid with a density of 600 kg/m3, a

velocity of 77.1 m/s and a pressure of 900 Pa. Find the velocity at another section where

the height is 12 m, and the pressure is 400 Pa


1
Expert's answer
2021-03-24T19:41:47-0400

In this problem, we will consider the general energy equation

P1γ+Z1+v122g=P2γ+Z2+v222g\frac{P_1}{\gamma}+ Z_1+\frac{v_1^2}{2g}=\frac{P_2}{\gamma}+ Z_2+\frac{v_2^2}{2g}

900600+6+77.122×9.81=400600+12+v222×9.81\frac{900}{600}+ 6+\frac{77.1^2}{2 \times 9.81}=\frac{400}{600}+ 12+\frac{v_2^2}{2 \times 9.81}

400600+12+v229.81=900600+6+77.1229.81\frac{400}{600}+12+\frac{v^2}{2\cdot \:9.81}=\frac{900}{600}+6+\frac{77.1^2}{2\cdot \:9.81}

400600+12+v229.81(400600+12)=900600+6+77.1229.81(400600+12)\frac{400}{600}+12+\frac{v^2}{2\cdot \:9.81}-\left(\frac{400}{600}+12\right)=\frac{900}{600}+6+\frac{77.1^2}{2\cdot \:9.81}-\left(\frac{400}{600}+12\right)

v229.81=32+5944.4119.62(23+12)+6\frac{v^2}{2\cdot \:9.81}=\frac{3}{2}+\frac{5944.41}{19.62}-\left(\frac{2}{3}+12\right)+6

19.62v229.81=35058.2419.62117.72\frac{19.62v^2}{2\cdot \:9.81}=\frac{35058.24\cdot \:19.62}{117.72}

v2=687842.6688117.72v^2=\frac{687842.6688}{117.72}

v=687842.6688117.72,v=687842.6688117.72v=\sqrt{\frac{687842.6688}{117.72}},\:v=-\sqrt{\frac{687842.6688}{117.72}}

v=76.43978,v=76.43978v=76.43978 , v=-76.43978

Hence , v2=76.4m/sv_2=76.4 m/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS