Question #174287

Find the linear velocities and accelerations of centers of sphere, disc and hoop that roll down an inclined plane without slipping. The incline of height h =1m makes an angle of 300 to the horizontal. The initial velocity of all objects v0 =0, compare calculated velocities and accelerations with the velocity and acceleration of the box, which slides from this incline without friction.


1
Expert's answer
2021-03-23T11:15:55-0400

Explanations & Calculations

  • By applying F=ma along the moving direction & using τ=Iα\small \tau=I\alpha simultaneously (as the rolling object does not slip, friction helps it roll by the generated torque), linear acceleration can be found & then using V2=U2+2as\small V^2=U^2+2as, linear velocity can be found as the linear acceleration is already found & it is constant for the given object.
  • The length of the incline is

s=1sin30=2m\qquad\qquad \begin{aligned} \small s&=\small \frac{1}{\sin30}=\bold{2m} \end{aligned}

  • For the sphere (a hollow sphere)

Is=2mr23mgsinθf=ma(1)fr=2mr23arf=2ma3(2)By (1) and (2)as=35gsinθ=2.94ms2Vs=6g5=3.429ms1\qquad\qquad \begin{aligned} \small I_s&=\small \frac{2mr^2}{3}\\ \small mg\sin\theta-f&=\small ma\cdots(1)\\ \small f\cdot r&=\small \frac{2mr^2}{3}\cdot\frac{a}{r}\\ \small f&=\small \frac{2ma}{3}\cdots(2) \\ \small\text{By (1) and (2)}\\ \therefore \small a_s&=\small \frac{3}{5}\cdot g\sin\theta=\bold{2.94ms^{-2}}\\ \\ \small V_s&=\small \sqrt{\frac{6g}{5}}=\bold{3.429ms^{-1}} \end{aligned}

  • For the disc

Id=mr22mgsinθf=ma(1)fr=mr22arf=ma2(2)By (1) and (2)ad=23gsinθ=3.26ms2Vd=4g3=3.615ms1\qquad\qquad \begin{aligned} \small I_d&=\small \frac{mr^2}{2}\\ \small mg\sin\theta-f&=\small ma\cdots(1)\\ \small f\cdot r&=\small \frac{mr^2}{2}\cdot\frac{a}{r}\\ \small f&=\small \frac{ma}{2}\cdots(2) \\ \small\text{By (1) and (2)}\\ \therefore \small a_d&=\small \frac{2}{3}\cdot g\sin\theta=\bold{3.26ms^{-2}}\\ \\ \small V_d &=\small \sqrt{\frac{4g}{3}}=\bold{3.615ms^{-1}} \end{aligned}

  • For the hoop

Ih=mr2mgsinθf=ma(1)fr=mr2arf=ma(2)By (1) and (2)ah=12gsinθ=2.45ms2Then,Vh=g=3.13ms1\qquad\qquad \begin{aligned} \small I_h&=\small mr^2\\ \\ \small mg\sin\theta-f&=\small ma\cdots(1)\\ \small f\cdot r&=\small mr^2\cdot\frac{a}{r}\\ \small f&=\small ma\cdots(2) \\ \small\text{By (1) and (2)}\\ \therefore \small a_h&=\small \frac{1}{2}\cdot g\sin\theta=\bold{2.45ms^{-2}}\\ \\ \small \text{Then,}\\ \small V_h&=\small \sqrt{g}=\bold{3.13ms^{-1}} \end{aligned}

  • For the block

mgsinθ=maab=gsinθ=4.9ms2then,Vb=4gsinθ=4.43ms1\qquad\qquad \begin{aligned} \small mg\sin\theta&=\small ma\\ \small a_b&=\small g\sin\theta=\bold{4.9ms^{-2}}\\ \\ \small \text{then,} \\ \small V_b&=\small \sqrt{4g\sin\theta}=\bold{4.43ms^{-1}} \end{aligned}


  • Comparison

Ib<Id<Is<Ihab>ad>as>ahVb>Vd>Vs>Vh\qquad\qquad \begin{aligned} \small I_b<I_d&<I_s<I_h\\ \small a_b>a_d&>a_s>a_h\\ \small V_b>V_d&>V_s>V_h \end{aligned}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS