Question #164318


A particle P is let fall vertically from a height to the ground . Another particle Q is projected vertically down 3s later with a velocity of 3m/s from the same height . If both particle reached the ground simultaneously , calculate 

(a)time by each particle to reach the ground

(d) distance travelled by each particle to the ground


1
Expert's answer
2021-02-17T10:41:08-0500

The formula for the magnitude of the displacement of the body thrown vertically down:\text{The formula for the magnitude of the displacement }\newline \text{of the body thrown vertically down}:

h=V0t+gt22h =V_0t+\frac{gt^2}{2}

for particle P:\text{for particle P:}

V0=0;h=gt22V_0=0;h=\frac{gt^2}{2}

h=gt22h =\frac{gt^2}{2}

In 3 s, particle A:\text{In 3 s, particle A:}

h1=4.5g - distance covered in 3 h_1 = 4.5g\text{ - distance covered in 3 }

V1=3gspeed A through 3sV_1 =3g -\text{speed A through 3s}

then:\text{then:}

h=h1+V1tf+gtf22 where h = h_1+V_1t_f+\frac{gt^2_f}{2}\text{ where }

tf=t3;ttotal fall time of particle At_f =t-3;t- \text{total fall time of particle A}

h=4.5g+3gtf+gtf22h = 4.5g+3gt_f+\frac{gt^2_f}{2}

for particle Q:\text{for particle Q:}

V0=3;h=3tf+gtf22V_0=3;h=3t_f+\frac{gt_f^2}{2}

equate expression h for A and Q\text{equate expression h for A and Q}

4.5g+3gtf+gtf22=3tf+gtf224.5g+3gt_f+\frac{gt^2_f}{2}= 3t_f+\frac{gt_f^2}{2}

tf=4.5g33g<0t_f=\frac{4.5g}{3-3g}<0

tf<0this is not a valid valuet_f<0 \text{this is not a valid value}

therefore the problem has no solution\text{therefore the problem has no solution}

Answer: For the given initial conditions, the problem has no solutions












Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS