1.(a) Given vertices are: ( 3 , − 1 , 2 ) , ( 1 , − 1 , 2 ) and ( 4 , − 2 , 1 ) (3,-1,2),(1,-1,2) \text{and} (4,-2,1) ( 3 , − 1 , 2 ) , ( 1 , − 1 , 2 ) and ( 4 , − 2 , 1 )
Area of triangle =∣ x 1 x 2 x 3 y 1 y 2 y 3 z 1 z 2 z 3 ∣ \begin{vmatrix}x_1&x_2&x_3\\y_1&y_2&y_3\\z_1&z_2&z_3\end{vmatrix} ∣ ∣ x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 ∣ ∣
=∣ 3 − 1 2 1 − 1 2 4 − 2 1 ∣ \begin{vmatrix}3&-1&2\\1&-1&2\\4&-2&1\end{vmatrix} ∣ ∣ 3 1 4 − 1 − 1 − 2 2 2 1 ∣ ∣
=3 ( − 1 + 4 ) + 1 ( 1 − 8 ) + 2 ( − 2 + 4 ) = 3 ( 3 ) + ( − 7 ) + 2 ( 2 ) 3(-1+4)+1(1-8)+2(-2+4)=3(3)+(-7)+2(2) 3 ( − 1 + 4 ) + 1 ( 1 − 8 ) + 2 ( − 2 + 4 ) = 3 ( 3 ) + ( − 7 ) + 2 ( 2 )
=9 − 7 + 4 = 6 sq. units 9-7+4=6 \text{sq. units} 9 − 7 + 4 = 6 sq. units
1.(b) Given
t = ( 1 − 2 ) i − 4 j + 5 t − p k ⇒ 5 t − t = i + 4 j + p k t=(1-2)i-4j+5t-pk\Rightarrow 5t-t=i+4j+pk t = ( 1 − 2 ) i − 4 j + 5 t − p k ⇒ 5 t − t = i + 4 j + p k
t = i 4 + j + p 4 k t=\dfrac{i}{4}+j+\dfrac{p}{4}k t = 4 i + j + 4 p k
Tangent unit vector is given by,-
t ^ = 1 4 ( i + 4 j + p k 1 2 + 4 2 + p 2 ) \hat{t}=\dfrac{1}{4}(\dfrac{i+4j+pk}{\sqrt{1^2+4^2+p^2}}) t ^ = 4 1 ( 1 2 + 4 2 + p 2 i + 4 j + p k )
=1 4 ( i + 4 j + p k p 2 + 17 ) \dfrac{1}{4}(\dfrac{i+4j+pk}{\sqrt{p^2+17}}) 4 1 ( p 2 + 17 i + 4 j + p k )
Comments