1. a) Calculate the area of a triangle whose vertices are given by (3,-1, 2), (1, -1,2)
and (4,-2, 1).
b) Determine the unit tangent vector to the following curve at t = 1
-2i+(-4))+ (5t-Pk
1.(a) Given vertices are: (3,−1,2),(1,−1,2)and(4,−2,1)(3,-1,2),(1,-1,2) \text{and} (4,-2,1)(3,−1,2),(1,−1,2)and(4,−2,1)
Area of triangle =∣x1x2x3y1y2y3z1z2z3∣\begin{vmatrix}x_1&x_2&x_3\\y_1&y_2&y_3\\z_1&z_2&z_3\end{vmatrix}∣∣x1y1z1x2y2z2x3y3z3∣∣
=∣3−121−124−21∣\begin{vmatrix}3&-1&2\\1&-1&2\\4&-2&1\end{vmatrix}∣∣314−1−1−2221∣∣
=3(−1+4)+1(1−8)+2(−2+4)=3(3)+(−7)+2(2)3(-1+4)+1(1-8)+2(-2+4)=3(3)+(-7)+2(2)3(−1+4)+1(1−8)+2(−2+4)=3(3)+(−7)+2(2)
=9−7+4=6sq. units9-7+4=6 \text{sq. units}9−7+4=6sq. units
1.(b) Given
t=(1−2)i−4j+5t−pk⇒5t−t=i+4j+pkt=(1-2)i-4j+5t-pk\Rightarrow 5t-t=i+4j+pkt=(1−2)i−4j+5t−pk⇒5t−t=i+4j+pk
t=i4+j+p4kt=\dfrac{i}{4}+j+\dfrac{p}{4}kt=4i+j+4pk
Tangent unit vector is given by,-
t^=14(i+4j+pk12+42+p2)\hat{t}=\dfrac{1}{4}(\dfrac{i+4j+pk}{\sqrt{1^2+4^2+p^2}})t^=41(12+42+p2i+4j+pk)
=14(i+4j+pkp2+17)\dfrac{1}{4}(\dfrac{i+4j+pk}{\sqrt{p^2+17}})41(p2+17i+4j+pk)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments