Question #163244

1. a) Calculate the area of a triangle whose vertices are given by (3,-1, 2), (1, -1,2)

and (4,-2, 1).

b) Determine the unit tangent vector to the following curve at t = 1

-2i+(-4))+ (5t-Pk


1
Expert's answer
2021-02-15T12:31:02-0500

1.(a) Given vertices are: (3,1,2),(1,1,2)and(4,2,1)(3,-1,2),(1,-1,2) \text{and} (4,-2,1)

Area of triangle =x1x2x3y1y2y3z1z2z3\begin{vmatrix}x_1&x_2&x_3\\y_1&y_2&y_3\\z_1&z_2&z_3\end{vmatrix}


=312112421\begin{vmatrix}3&-1&2\\1&-1&2\\4&-2&1\end{vmatrix}

=3(1+4)+1(18)+2(2+4)=3(3)+(7)+2(2)3(-1+4)+1(1-8)+2(-2+4)=3(3)+(-7)+2(2)

=97+4=6sq. units9-7+4=6 \text{sq. units}

1.(b) Given

t=(12)i4j+5tpk5tt=i+4j+pkt=(1-2)i-4j+5t-pk\Rightarrow 5t-t=i+4j+pk

t=i4+j+p4kt=\dfrac{i}{4}+j+\dfrac{p}{4}k

Tangent unit vector is given by,-

t^=14(i+4j+pk12+42+p2)\hat{t}=\dfrac{1}{4}(\dfrac{i+4j+pk}{\sqrt{1^2+4^2+p^2}})


=14(i+4j+pkp2+17)\dfrac{1}{4}(\dfrac{i+4j+pk}{\sqrt{p^2+17}})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS