1. a) Calculate the area of a triangle whose vertices are given by (3,-1, 2), (1, -1,2)
and (4,-2, 1).
b) Determine the unit tangent vector to the following curve at t = 1
-2i+(-4))+ (5t-Pk
1.(a) Given vertices are: "(3,-1,2),(1,-1,2) \\text{and} (4,-2,1)"
Area of triangle ="\\begin{vmatrix}x_1&x_2&x_3\\\\y_1&y_2&y_3\\\\z_1&z_2&z_3\\end{vmatrix}"
="\\begin{vmatrix}3&-1&2\\\\1&-1&2\\\\4&-2&1\\end{vmatrix}"
="3(-1+4)+1(1-8)+2(-2+4)=3(3)+(-7)+2(2)"
="9-7+4=6 \\text{sq. units}"
1.(b) Given
"t=(1-2)i-4j+5t-pk\\Rightarrow 5t-t=i+4j+pk"
"t=\\dfrac{i}{4}+j+\\dfrac{p}{4}k"
Tangent unit vector is given by,-
"\\hat{t}=\\dfrac{1}{4}(\\dfrac{i+4j+pk}{\\sqrt{1^2+4^2+p^2}})"
="\\dfrac{1}{4}(\\dfrac{i+4j+pk}{\\sqrt{p^2+17}})"
Comments
Leave a comment