On each segment of movement, the speed is calculated
by the formula for uniformly accelerated movement
v(t)=v0+at
for t∈[0,2.5]
v(t)=v0+a1t
v0=0;a1=1.7
v(t)=1.7t
for t∈[2.5,6.5]
v(t)=v0+a2(t−2.5)
v0=v(2.5)=1.7∗2.5=4.25
a2=4.4
v(t)=4.25+4.4(t−2.5) (1)
a(4.9)=Δtv(4.9)−v(0)=4.9v(4.9)−v(0)
v(4.9)=4.25+4.4∗(4.9−2.5)=14.81 of (1)
v(0)=0
a(4.9)=4.914.81≈3.02
v(6.5)=4.25+4.4(6.5−2.5)=21.85 of (1)
for t∈[6.5,25.5]
v(t)=v0+a3(t−6.5)
v0=v(6.5)=21.85
v(t)=21.85+a3(t−6.5)
v(19+6.5)=0( next the boat decelerates to a stop in 19.0 s )
v(19+6.5)=21.85+a3(19+6.5−6.5)
21.85+19a3=0
a3=−1.15
Answer: a(4.9)≈3.02m/s2;v(6.5)=21.85m/s;a3=−1.15m/s2
Comments