A particle travels with acceleration ~a = 2e−t ˆi + 5 cost jˆ − 3 sin tˆk.
If the initial (i.e. at time t=0) position of the particle is located at (1, −3, 2) and its initial velocity is 4ˆi − 3jˆ + 2ˆk, find its displacement at time t
Given acceleration, "\\vec{a} = 2e^{-t}\\hat{i}+5cost\\hat{j}-3sint\\hat{k}"
Velocity is given by, "\\vec{v} = \\int \\vec{a} dt = \\int (2e^{-t}\\hat{i}+5cost\\hat{j}-3sint\\hat{k})dt"
Integrating, "\\vec{v} = ( -2e^{-t} + a)\\hat{i} + (5sint + b)\\hat{j} - (-3cost + c)\\hat{k}"
Since we are given velocity at t=0,
Then,
"4\\hat{i}-3\\hat{j}+2\\hat{k} = ( -2e^{0} + a)\\hat{i} + (5sin0 + b)\\hat{j} - (-3cos0 + c)\\hat{k}"
Comparing both sides, "-2+a = 4 \\implies a = 6, b=-3, c=1"
Then, "\\vec{v} = ( -2e^{-t} + 6)\\hat{i} + (5sint -3)\\hat{j} - (-3cost + 1)\\hat{k}"
Displacement is given by, "\\vec{s} = \\int \\vec{v} dt"
"\\vec{s} = \\int [( -2e^{-t} + 6)\\hat{i} + (5sint -3)\\hat{j} - (-3cost + 1)\\hat{k}] dt"
Integrating, "\\vec{s} = [( 2e^{-t} + 6t+d)\\hat{i} + (-5cost -3t+f)\\hat{j} - (-3sint + t+g)\\hat{k}]"
d, f and g are constant.
We are given position at time t=0,
"1\\hat{i}-3\\hat{j}+2\\hat{k} = [( 2e^{0} + 6\\times0+d)\\hat{i} + (-5cos0 -3\\times0 +f)\\hat{j} - (-3sin0 + 0+g)\\hat{k}]"
Comparing both sides,
we get, "d=-1, f=2, g=-2"
Then Displacement will be,
"\\vec{s} = ( 2e^{-t} + 6t-1)\\hat{i} + (-5cost -3t+2)\\hat{j} - (-3sint + t-2)\\hat{k}"
Comments
This is really so helpful,thankyou
Leave a comment