Question #162087

A particle travels with acceleration ~a = 2e−t ˆi + 5 cost jˆ − 3 sin tˆk.

If the initial (i.e. at time t=0) position of the particle is located at (1, −3, 2) and its initial velocity is 4ˆi − 3jˆ + 2ˆk, find its displacement at time t








1
Expert's answer
2021-02-10T10:08:09-0500

Given acceleration, a=2eti^+5costj^3sintk^\vec{a} = 2e^{-t}\hat{i}+5cost\hat{j}-3sint\hat{k}

Velocity is given by, v=adt=(2eti^+5costj^3sintk^)dt\vec{v} = \int \vec{a} dt = \int (2e^{-t}\hat{i}+5cost\hat{j}-3sint\hat{k})dt


Integrating, v=(2et+a)i^+(5sint+b)j^(3cost+c)k^\vec{v} = ( -2e^{-t} + a)\hat{i} + (5sint + b)\hat{j} - (-3cost + c)\hat{k}


Since we are given velocity at t=0,

Then,

4i^3j^+2k^=(2e0+a)i^+(5sin0+b)j^(3cos0+c)k^4\hat{i}-3\hat{j}+2\hat{k} = ( -2e^{0} + a)\hat{i} + (5sin0 + b)\hat{j} - (-3cos0 + c)\hat{k}

Comparing both sides, 2+a=4    a=6,b=3,c=1-2+a = 4 \implies a = 6, b=-3, c=1

Then, v=(2et+6)i^+(5sint3)j^(3cost+1)k^\vec{v} = ( -2e^{-t} + 6)\hat{i} + (5sint -3)\hat{j} - (-3cost + 1)\hat{k}


Displacement is given by, s=vdt\vec{s} = \int \vec{v} dt

s=[(2et+6)i^+(5sint3)j^(3cost+1)k^]dt\vec{s} = \int [( -2e^{-t} + 6)\hat{i} + (5sint -3)\hat{j} - (-3cost + 1)\hat{k}] dt


Integrating, s=[(2et+6t+d)i^+(5cost3t+f)j^(3sint+t+g)k^]\vec{s} = [( 2e^{-t} + 6t+d)\hat{i} + (-5cost -3t+f)\hat{j} - (-3sint + t+g)\hat{k}]

d, f and g are constant.


We are given position at time t=0,

1i^3j^+2k^=[(2e0+6×0+d)i^+(5cos03×0+f)j^(3sin0+0+g)k^]1\hat{i}-3\hat{j}+2\hat{k} = [( 2e^{0} + 6\times0+d)\hat{i} + (-5cos0 -3\times0 +f)\hat{j} - (-3sin0 + 0+g)\hat{k}]

Comparing both sides,

we get, d=1,f=2,g=2d=-1, f=2, g=-2


Then Displacement will be,

s=(2et+6t1)i^+(5cost3t+2)j^(3sint+t2)k^\vec{s} = ( 2e^{-t} + 6t-1)\hat{i} + (-5cost -3t+2)\hat{j} - (-3sint + t-2)\hat{k}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Esther
24.02.23, 10:47

This is really so helpful,thankyou

LATEST TUTORIALS
APPROVED BY CLIENTS