Question #156736

A piano mover pushes a piano (m = 275 kg) with an applied horizontal of 1075 N. This causes the piano to accelerate, from rest, to a final velocity of 0.92 m/s over a time of 5.0 s. Calculate:

a) The acceleration of the piano. (3 marks)

b) The net force acting on the piano. (3 marks)

c) The normal force acting on the piano. (3 marks)

d) The coefficient of kinetic friction between the piano and the floor. 


1
Expert's answer
2021-01-21T18:13:25-0500

a) We can find the acceleration of the piano from the formula:


a=vvot=0.92 ms05.0 s=0.184 ms2.a=\dfrac{v-v_o}{t}=\dfrac{0.92\ \dfrac{m}{s}-0}{5.0\ s}=0.184\ \dfrac{m}{s^2}.

b) We can find the net force acting on the piano from the Newton's Second Law of Motion:


Fnet=ma=275 kg0.184 ms2=50.6 N.F_{net}=ma=275\ kg\cdot0.184\ \dfrac{m}{s^2}=50.6\ N.

b) We can find the normal force acting on the piano from the formula:


FN=mg=275 kg9.8 ms2=2695 N.F_N=mg=275\ kg\cdot9.8\ \dfrac{m}{s^2}=2695\ N.

d) Let's apply the Newton's Second Law of Motion:


FpushFfr=ma,F_{push}-F_{fr}=ma,Fpushμkmg=ma,F_{push}-\mu_k mg=ma,μk=Fpushmamg,\mu_k=\dfrac{F_{push}-ma}{mg},μk=1075 N275 kg0.184 ms2275 kg9.8 ms2=0.38\mu_k=\dfrac{1075\ N-275\ kg\cdot 0.184\ \dfrac{m}{s^2}}{275\ kg\cdot 9.8\ \dfrac{m}{s^2}}=0.38

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS