Steps to do..
Detailed solution...
Speed of light is "c=3\\times10^{8}" m/s. Here proton's speed is very less than "c". So here we will use non-relativistic definitions of energy and momentum. Initial momentum along x-axis is...
"p_{xi}=m\\times V_A =m\\times 3\\times 10=30m.....eq[1]"final momentum along x-direction...
"p_{xf}= (m\\times 1.5\\times 10\\times \\cos{60})+m V_{B}\\cos{\\theta}\\\\\np_{xf}=\\cfrac{15m}{2}+mV_{B}\\cos{\\theta}.....eq[2]"
Initial momentum along y-direction...
"p_{yi}=0.....eq[3]"
Final momentum along y-direction...
"p_{yf}=\n(m\\times 1.5\\times 10\\times \\sin{60})-(mV_{b}\\sin{\\theta}).....eq[4]"
Conservation of momentum...
"p_{xi}=p_{xf}"and
"p_{yi}=p_{yf}"From eq[1] and eq[2]...
"30m = \\cfrac{15m}{2}+mV_{B}\\cos{\\theta}\\\\\n\\cfrac{45}{2}= V_{B}\\cos{\\theta}.....eq[5]"and from eq[3] and eq[4]...
"\\cfrac{15m\\sqrt{3}}{2}= mV_{B} \\sin{\\theta}\\\\\n\\cfrac{15\\sqrt{3}}{2}= V_{B}\\sin{\\theta}.....eq[6]"squaring and adding eq[5] and eq[6]...
"\\bigg(\\cfrac{45}{2}\\bigg)^{2}+ \\bigg(\\cfrac{15\\sqrt{3}}{2}\\bigg)^{2}= (V_{B})^{2}\\\\\nV_{B}= \\cfrac{\\sqrt{45^{2}+(15\\sqrt{3})^2}}{2}\\\\\nV_{B}=51.96 m\/sec.....Ans"deviding eq[6] by eq[5]...
"\\tan{\\theta}= \\cfrac{1}{\\sqrt{3}}\\\\\n\\theta= 30\\degree.....Ans""K.E_{i}= \\cfrac{m(3\\times10^2)}{2}=450m\\\\\nK.E_{f}=\\cfrac{m(1.5\\times10)^2}{2}+ \\cfrac{mV_{B}^2}{2}\\\\\nK.E_{f}=\\cfrac{1}{2}m[15^2+59.96^2]\\\\\nK.E_{f}=1462.5m"
Since "K.E_{i}{=}\\mathllap{\/\\,} K.E_{f}"
hence collision is not elastic.
Comments
Leave a comment