Question #141196
Sand is deposited at a uniform rate of 20 Kg/s and with negligible kinetic energy on to an empty conveyor belt moving horizontally at a constant speed of 10 meters per minute. Find (a) the force required to maintain the constant velocity, (b) the power required to maintain a constant velocity, and (c) the rate of change of kinetic energy of the moving sand
1
Expert's answer
2020-11-03T10:47:05-0500

From Newton's second law, Force is defined as the rate of change in momentum.


F=dPdt=d(mv)dt=mdvdt+vdmdtF=mdvdt+vdmdt(1)where P, m, v and t represent momentum,mass, velocity and time respectively.F=\frac{dP}{dt}=\frac{d(mv)}{dt}=m\frac{dv}{dt}+v\frac{dm}{dt}\\ F=m\frac{dv}{dt}+v\frac{dm}{dt}\hspace{2cm}(1)\\ \textsf{where P, m, v and t represent momentum,mass, velocity and time respectively.}\\


(a) Since the conveyor belt is to maintain a constant velocity, dvdt=0.\frac{dv}{dt}=0.

Equation (1) therefore becomes F=vdmdt.From the question,v=10mmin=10m60s=16ms1dmdt=20kgs1The Force is,F=16ms1×20kgs1=103kgms2F=3.33N.F=v\frac{dm}{dt}.\\ \textsf{From the question,}\\ v=\frac{10m}{min} = \frac{10m}{60s}= \frac{1}6ms^{-1}\\ \frac{dm}{dt}=20kgs^{-1}\\\hspace{2cm}\\ \textsf{The Force is,}\\ F=\frac{1}6ms^{-1} × 20kgs^{-1}=\frac{10}3kgms^{-2}\\ F=3.33N.


(b) The power is given by,

P=F×vP=3.33N×16ms1P=0.56WP=F×v P=3.33N×\frac{1}6ms^{-1}\\ P=0.56W


(c) From work energy principle,

Change in Kinetic energy = Workdone

d(K.E)dt=Workdonetimed(K.E)dt=Powerd(K.E)dt=0.56W\frac{d(K.E)}{dt}=\frac{Workdone}{time}\\ \frac{d(K.E)}{dt}=Power\\ \frac{d(K.E)}{dt}=0.56W

The rate of change of kinetic energy of the moving sand is therefore 0.56W0.56W


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS