Answer to Question #135515 in Mechanics | Relativity for alfraid

Question #135515
The Hamiltonian for a spin-1/2 particle at rest is given by H=E0(σz+ασx), where σx and σz are Pauli spin matrices and E0 and α are constants. The eigenvalues of this Hamiltonian are
1
Expert's answer
2020-10-16T11:01:36-0400

Solution

Hamiltonian is given by

H=E0(σz+ασx)H=E_0(\sigma_z+\alpha\sigma_x)

Using pauli matrices


H=E0(1001)++E0α(0101)H=E_0\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}++ E_0 \alpha\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}

H=E0(1αα1)H=E_0\begin{pmatrix} 1 & \alpha \\ \alpha & -1 \end{pmatrix}

if eigenvalue is λ\lambda then

HλI=0H-\lambda I=0

E0((1λ)αα(1+λ))=0E_0\begin{pmatrix} (1-\lambda) & \alpha\\ \alpha & -(1+\lambda) \end{pmatrix}=0


λ=+E01+α2\lambda=+E_0\sqrt{1+\alpha^2}

or λ=E01+α2\lambda=-E_0\sqrt{1+\alpha^2}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment