Solution
Hamiltonian is given by
"H=E_0(\\sigma_z+\\alpha\\sigma_x)"
Using pauli matrices
"H=E_0\\begin{pmatrix}\n 1 & 0\\\\\n 0 & -1\n\\end{pmatrix}++ E_0 \\alpha\\begin{pmatrix}\n 0 & 1 \\\\\n 0 & 1\n\\end{pmatrix}"
"H=E_0\\begin{pmatrix}\n 1 & \\alpha \\\\\n \\alpha & -1\n\\end{pmatrix}"
if eigenvalue is "\\lambda" then
"H-\\lambda I=0"
"E_0\\begin{pmatrix}\n (1-\\lambda) & \\alpha\\\\\n \\alpha & -(1+\\lambda)\n\\end{pmatrix}=0"
"\\lambda=+E_0\\sqrt{1+\\alpha^2}"
or "\\lambda=-E_0\\sqrt{1+\\alpha^2}"
Comments
Leave a comment